basic TRAINING

March 2004
[image: image1.png]
Customer Driven Solutions for Interactive Documents

Team IADS Technical Support

Email: iads@redstone.army.mil

Phone: (256) 876-IADS

DSN: (256) 746-IADS

Fax #: (256) 842-6546

DSN fax: (256) 788-6546

Mailing Address

Commander: US Army AMCOM

AMSAM-MMC-MA-NP

Sparkman Center, Building 5301, Room 1128

Redstone Arsenal, Alabama 35898

Website

https://iads.redstone.army.mil

BASIC IADS COURSE OUTLINE

1basic TRAINING

2BASIC IADS COURSE OUTLINE

4SYLLABUS

5IADS

5IADS AUTHOR and IADS READER

5IADS Reader

5IADS Author

6ISO 9660 SPECIFICATIONS

7DIRECTORY STRUCTURE

7No Path

7Full DOS Path With Drive Letter

7Full DOS Path Without Drive Letter

7Relative Path (Recommended)

8SGML AND DTDs

8Standard Generalized Markup Language (SGML)

9Document Type Definition (DTD)

11COMMENTS

12DTD WORKSHEET

13IADS REQUIREMENTS

14DOCTYPE STATEMENTS

14PROCESSING INSTRUCTIONS

14Frame Processing Instruction

15LIST OF PROCESSING INSTRUCTIONS

15Top Level Processing Instructions

16Frame level

16Other Processing Instructions

17STYLESHEET

17creating a stylesheet (New)

17associate stylesheet to file

17Modify an existing Stylesheet (stylesheet that is associated with a file)

18IADS ADMIN, LOGIN, LOGOUT

18Admin

18Login/Logout

19FILE AND FRAME PROPERTIES

19File Properties

20Frame Properties

21User Parameters

21Change default document (Select a New File)

21Change default document (select the File currently loaded)

21Change System Editor (Author Only)

22TABLE OF CONTENTS

23EDIT MODE

23Creating Hotspots

23Edit Mode vs System Editor

24HOTSPOT ATTRIBUTE EXAMPLES

25ID/IDREFS

26CHANGE TAGS

26Change Processing Instruction

27ALERTS

27Text Alerts

28Embedded Alerts

28Pop-Up Alerts

29Additional Alert Attributes

29Disable Pop-up alerts and Embedded Alerts (for Authoring ONLY)

30CALS TABLES

30Commerce At Light Speed (CALS)

32CALS Table ELEMENT and ATTRIBUTE Definitions

33IADS CALS Table Model (Copied From the DTD)

34GRAPHICS

34ZoomView

36Split Screen

36Embedded

37Icon

38DOC. DOMAIN TOOLS

38Order to build Domains

38Building a DOMAIN

38Associate DOMAIN file with .sgm/.ide

39Building a Word Index

39Building a TOC Domain

39Associating the TOC DOMAIN

40LINK VERIFIER

40Running Link Verifier

41DOCUMENT INSTANCES, CATALOGS, AND ASSOCIATED FILES

41CATALOG

41Public Identifier

42PARSING

42NSGML Parser Requirements

42Pointer CATALOG

43Parsing with a public identifier

43Parsing without a public identifier

44Parsing Errors

45RPSTL AUTHOR/READER

45Repair Parts and Special Tools List

45Section2.tag File

47RPSTL - Step by Step

48Naming Convention for RPSTL graphics

49RPSTL Hotspot Utility (Additional Step(s))

50RPSTL Extras

51Changes made to an existing RPSTL

52Dynamic Data for RPSTL (Optional)

52Steps to create a dyn.ini file

52Steps to create a dyn.tag file

53Reference Designator for RPSTL (Optional)

54WEBSITE REFERENCES

55DTD CHEAT SHEET

55Definitions

55Symbols

SYLLABUS

This training material and the IADS training course are primarily meant to help users understand how IADS works and how IADS works with markup language.
Day One

· Introductions and IADS Overview

· Directory Structure/Paths

· SGML Overview/Use of a Document Type Definition (DTD)

· Hand-tagging Cover page

· Starting an IADS Document using the System Editor (Cover.sgm)

· Creating a Stylesheet (Cover.sty)

· Login/Logout & Admin

Day Two

· Hand-tagging the Cover using the System Editor (Chapter2.sgm)

· Creating a StyleSheet for the Cover (Chapter2.sty)

· New Table of Contents
· File & Frame Properties/Split Screen/Custom Button Editor (Help Button)

· Edit Mode (Insert Graphic)

· Creating Hotspots in Edit Mode

· ID/IDREFs, Change, and Alerts

Day Three

· CALS Tables

· ZoomView - Graphics viewing package

· Domain List/Link Verifier

· Document Instances

· Parsing

· Review

Day Four – Half Day

· RPSTL Authoring
· Hotspot Utilities
· Dyn.tag file (optional)

IADS

IADS (Interactive Authoring Display System) is an Army funded project originally developed to help reduce paper documentation through creating and distributing technical manuals in electronic format, IETM (Interactive Electronic Technical Manual). IADS utilizes SGML (Standard Generalized Markup Language) to manipulate text and graphics.

IADS AUTHOR and IADS READER

IADS Reader

The Reader software is designed to display the final document to the end-user. The user accesses information through menu or button commands or through hotspots (hypertext links) by using the mouse or keyboard inputs.

IADS Author

The Author software includes all the functionality of the Reader program, and in addition provides the necessary tools to aid in hypertext document creation. The Authoring, Edit, and Options/Set User Parameters/Authoring menus are included in the Author program only.

ISO 9660 SPECIFICATIONS

ISO 9660 is a document that defines a standard file naming convention used in producing a CD-ROM in order to ensure readability across different computer platforms. The following bullets represent some of the standards defined in this document.

· The file structure is like DOS. File, directory, and volume names must be in CAPS. Only alphanumerical and underscore characters are allowed. For example:

	ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_

· File names must follow the DOS standard of a MAXIMUM of eight characters, a dot and a three character extension. For example:

	033.TIF, RESUME.DOC, LETTER.TXT, 12345678.900

· There may be only a maximum of eight directories including the root directory. Directory names must follow the DOS standard of a MAXIMUM of eight characters. For example:

	C:\\WORD\COMPANY\LETTERS\MONTH\DAY\DEPART\MANAGER

· Volume names must be limited to eleven alphanumeric (including the underscore) characters.

· DOS has a limit of 510 files and directories in the ROOT directory.

· Do NOT use the extension characters in the directory names. For example:

	PROJ.01.txt

· The complete file name or path is limited to a total of 65 characters. Operating systems like Novell allow longer file names and paths and would need to be shortened to 65 characters.

· How to make a fully ISO 9660 compliant CD-ROM disc for the PC and Macintosh: Volume name is limited to 11 alphanumeric and underscore characters in all CAPS. All directories and files are limited to 8 alphanumeric and underscore characters in all CAPS. Files must have a dot and a three character extension. Macintosh icons don’t lay out in a particular order and they will use a generic icon. When writing an ISO 9660 disc a dot, a semi-colon and a 1 will appear after the file name (hidden in DOS). If the applications that you want to run on a Macintosh or Unix system look for a particular file or application, include the.;1 in that name. For example:

	WORD.;1

033.TIF.;1

RESUME.DOC.;1

LETTER.TXT;1

12345678.900.;1

DIRECTORY STRUCTURE

No Path

Cover.sty

Full DOS Path With Drive Letter

C:\Helmet\Styles\Cover.sty

Full DOS Path Without Drive Letter

\Helmet\Styles\Cover.sty

Relative Path (Recommended)

..\Styles\Cover.sty

· one dot means stay in the folder you are currently in
· two dots means go up level in the directory structure

SGML AND DTDs

Standard Generalized Markup Language (SGML)

· SGML is a stand-alone information exchange method that is the International Organization for Standardization standard for document description (ISO 8879). Charles Goldfarb of IBM was responsible for creating the SGML standard in 1986. Also, the Commerce at Light Speed (CALS) requires the use of SGML to electronically receive, store, and distribute technical product documentation with its suppliers. The two main objectives are to reduce the amount of paper flow and have one universal data source.

· SGML was designed for use in the publication field, but can be used in other areas, such as: engineering, medical, libraries, non-DOD government, and even home use. SGML is of value because it establishes organizational structure that remains consistent regardless of the number of people who contribute to it.

· SGML is also machine independent (can be used with Windows, Mac., and UNIX) and also vendor independent (IADS, ArborText, SoftQuad, and many others). All that is needed to create a document using SGML is an ASCII text editor (WordPad, UltraEdit, Word and many others).

Three Parts

· Declaration: Defines the rules by which a DTD will be written such as: how many characters an element can contain, and if an element can contain symbols, etc.
· Document Type Definition (DTD): Defines the rules by which a document is tagged. A DTD is written in SGML.

· Document Instance: all SGML tagged files, DTD(s), DTD Declaration, CATALOG file(s), all files referenced from within these files, and displays electronically.

Purpose

· SGML is a language comprised of descriptive "tags" that define or name the different parts of a document. Tags are placed throughout the text to define the structure of the document. A key word to keep in mind when referring to SGML is STRUCTURE.
A Memo Prior to SGML Tagging

	To: Tom
From: John
Date: 6/24/03

Subject: Golf Today

I will meet you today at 3:30 to play golf. Don’t be late for our tee time.

See you then!

John

A Memo Containing SGML Tagging

	<type>

<memo>

<to>To: Tom</to>

<from>From: John</from>

<date>6/24/03</date>

<subject>Golf Today</subject>

<body>

<para>I will meet you today at 3:30 to play golf. Don’t be late for our tee time.</para>

<para>See you then!</para>

</body>

<closure>John</closure>

</memo>

</type>

**The above tags define the different parts of the memo. There are no instructions on how the document is to be displayed (margins, font, justification…).

Document Type Definition (DTD)

A DTD defines the rules by which a document is tagged. There are two types of DTDs: structure based and content based. Structure based DTDs utilize tag names that describe how the data is organized. Content based DTDs contain tag names that are descriptive of the tags subject matter. In both types of DTDs there are three types of markup commands: ELEMENTS, ATTRIBUTES, and ENTITIES. A DTD defines three types of markup commands: ELEMENTS, ATTRIBUTES, and ENTITIES.

ELEMENTS

Elements are a set of tags with content in between.

· are referred to as “tags” (when you see the word ELEMENT, a tag is typed in system editor)

· can be open tags, closed tags, or be EMPTY (must have an open tag but cannot have a closed tag)

· normally contain text content

· are not case sensitive.

Example of an Element

	
[image: image2.emf]<title>SGML Training Notes</title>

Open Tag

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

Open caret

Close caret

ELEMENT

<title id=“notes”>SGML training notes</title>

Open caret

Open Tag with ATTRIBUTE

Close caret

Text displayed on screen

Open caretClose caret

Close Tag

ELEMENTELEMENT

ATTRIBUTE

Attribute value

ELEMENTS Within a Pretend DTD for Classroom Example

	<!DOCTYPE type [

<!ELEMENT type
-- (memo | report)+>
<!ELEMENT memo
-- (to, from, date, subject, body, closure)>
<!ELEMENT report
-- (cover, facts)>
<!ELEMENT cover
-- (title, subtitle)>
<!ELEMENT title
-- (#PCDATA)>
<!ELEMENT subtitle
-- (#PCDATA)>
<!ELEMENT facts
-- ((title?, para+)+) +table>
<!ELEMENT table
-- (entry+)>
<!ELEMENT entry
-- (#PCDATA)>
<!ELEMENT body
-- (para)+>
<!ELEMENT closure
-- (#PCDATA)>
<!ELEMENT to
-o (#PCDATA)>
<!ELEMENT from
-o (#PCDATA)>
<!ELEMENT date
-o (#PCDATA)>
<!ELEMENT subject
-o (#PCDATA)>

<!ELEMENT para
-- (#PCDATA)>
]>

ATTRIBUTES

Attributes describe more about an ELEMENT.

· are always contained inside the "open" tag, and are not closed.

· are separated by a minimum of one space followed by an equal sign and quotes or apostrophes.

· may be "REQUIRED" or "IMPLIED". REQUIRED attributes must be used and must be given a value. IMPLIED attributes may or may not be used. Some IMPLIED attributes have default values, as indicated in the DTD. If they are not used the default value is automatically assumed.

· IADS has a limit of 128 attributes per tag.

Example of an Attribute

	
[image: image3.emf]<title>SGML Training Notes</title>

Open Tag

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

Open caret

Close caret

ELEMENT

<title id=“notes”>SGML training notes</title>

Open caret

Open Tag with ATTRIBUTE

Close caret

Text displayed on screen

Open caretClose caret

Close Tag

ELEMENTELEMENT

ATTRIBUTE

Attribute value

Attributes Added to Pretend DTD To Continue Classroom Example

	<!DOCTYPE type [

<!ELEMENT type
-- (memo | report)+>

<!ELEMENT memo
-- (to, from, date, body, closure)>

<!ATTLIST memo

id CDATA "#IMPLIED"

sectype (confidential | public) "confidential">

<!ELEMENT report
-- (cover, facts)>

<!ELEMENT cover
-- (title, subtitle)>

<!ELEMENT title
-- (#PCDATA)>

<!ELEMENT subtitle
-- (#PCDATA)>

<!ELEMENT facts
-- (title, para+, table)+>

<!ELEMENT table
-- (entry+)>

<!ELEMENT entry
-- (#PCDATA)>

<!ATTLIST entry

align (left | right | center | justify) "left">

<!ELEMENT body
-- (para)+>

<!ELEMENT closure
-- (#PCDATA)>

<!ELEMENT to

-o (#PCDATA)>

<!ELEMENT from
-o (#PCDATA)>

<!ELEMENT date
-o (#PCDATA)>

<!ELEMENT subject
-o (#PCDATA)>

<!ELEMENT para
-- (#PCDATA)>

]>

ENTITIES

An entity is a way to create a shortcut that can be referenced throughout the SGML instance. Think of an ENTITY as substitution. Example, if you someone tells you they live in the USA, they mean United States of America. An ENTITY can call out graphics; text or other SGML tagged data. ENTITIES can be found in both the DTD and the .sgm file. An entity must be referenced within a set of tags. To reference an entity, start with the ampersand (&) sign and end with a semi-colon (;). The ampersand tells IADS where an entity starts and the semi-colon tells IADS where an entity ends.

Special Character Entity

The use of special character entities is a means of displaying a symbol(s) on the screen that are not found on the keyboard. These entities are pulled in from the DTD and are ISO registered.

	Special character entity coded

<para>2 is ½ of four.</para>

Special character displayed on the screen

2 is ½ of four.

Parameter Entity (within a DTD)

The use of a parameter entity within a DTD is a way to create a shortcut where multiple tags are used. The entities are usually defined in the beginning of the DTD and then called out within an ELEMENT.

	Entities within a DTD

<!ENTITY % async "emphasis | subscrpt | supscrpt | symbol" >

<!ENTITY % list "randlist | seqlist | deflist" >

<!ENTITY % specpar "warning | caution | note" >

<!ENTITY % text "(#PCDATA | change | verbatim | emphasis | graphic | para)*" >

Entities being called out within an ELEMENT

<!ELEMENT para - - (#PCDATA | paratext | %list; | %async;)*>

COMMENTS

Comments assist the author in documenting pertinent information within an SGML file without being displayed on the screen or viewed by the parser (see PARSING on page 42. <!-- is the start of the comment and --> is the end of the comment.

Example of a Comment Used Within the Text Editor

	<file>

<body>

<para>This is the first paragraph.</para>

<!--
<para>This text will not appear in IADS.</para>

-->

</body>

</file>

DTD WORKSHEET

<!ELEMENT iadsdoc -o (idxcls | contcls | struccls)

+ (button, novice, change, target, hotspot, alert, table, tableold)>

<!ELEMENT para0 -- (title?, (%specpar; | para | %list; | subpara1)+)>

<!ELEMENT safesum -- (graphic*, title, (para | %specpar; | %list;)+)>

<!ELEMENT title -- (#PCDATA) + (%async;)>

<!ELEMENT caution -- (title*, (para | %list;) +)>

IADS REQUIREMENTS
IADS has three requirements:

· A top-level tag (the first tag used) of <file> must be used unless otherwise stated in the DOCTYPE statement (See DOCTYPE Statement).

Example of <file> Being Used

	<file>

<para>This is an example of the file tag required for IADS to display text on the screen.</para>

</file>

· All documents must be in plain ASCII text format.

· All documents should have an extension of .sgm or .ide.

Frame Tag

The frame tag is used to break a document into logical sections of information. It identifies the start of each new frame. The first frame tag must be placed after the top-level tag (In the example below <file> is the top-level tag).

· The attribute id is a required attribute of the frame tag. It must have a unique value. (See Processing Instructions for the use of a frame processing instruction instead of a frame tag.)

Example of <frame> Being Used

	<file>

<Frame id="Frame 1">

<para>This frame tag defines the first frame to display.</para>

</Frame>

<Frame id="Frame 2">

<para>This sentence would be displayed on the second frame.</para>

</Frame>

</file>

IADS Reserved Tags
The following tags are reserved by IADS and perform specific functions.
Reserved Tags

	<file>

<frame>

<button>

<hotspot>

<graphic>

<novice>

<change>

<alert>
	<emphasis>

<action>

<target>

<verbatim>

<subscrpt>

<supscrpt>

<input>

<option>

<select>
	<table>

<colspec>

<spanspec>

<tgroup>

<thead>

<tbody>

<tfoot>

<row>

<entry>

DOCTYPE STATEMENTS

IADS allows the author to specify a top-level tag other than <file>. A DOCTYPE statement is a declaration of the top-level tag from the DTD being used. It should be placed at the beginning of each document to identify the top-level tag. The top-level tag must be the first tag used after the doctype statement. ** The <file> tag should not be used when using a DOCTYPE statement.
Example of a redefined Top-Level Tag

	<!DOCTYPE iadsdoc [

]>

<iadsdoc>

PROCESSING INSTRUCTIONS

Processing instructions tell IADS to perform a specific procedure. When validating a document all processing instructions are ignored. They begin with <? and end with ?>.

Frame Processing Instruction

Like the frame tag, the frame processing instruction is also used to break a document into logical sections of information. The first frame processing instruction must be placed after the top-level tag (In the example below the tag <iadsdoc> is the top-level tag).

· The attribute ID is a required attribute of the frame processing instruction.
Example of a Frame Processing Instruction

	<!DOCTYPE iadsdoc [

]>

<iadsdoc>

<?frame id="Frame 1"?>

<para>This frame processing instruction defines the first frame to display.</para>

<?frame id="Frame 2"?>

<para>This sentence would be displayed on the next frame.</para>

</iadsdoc>

LIST OF PROCESSING INSTRUCTIONS

Top Level Processing Instructions

Style Sheet (link All frames the same Stylesheet)

<?Stylesheet href=”./styles/toc.sty”>

Domain (Link all files to the same domain list)

<?Domainfile href=”./domain.lst”?>

Multiple Domain (Link Multiple domain files)

<?MultiDomainDir HREF="directory"?>
Index (Manipulate the Index button)

<?Indexfile href=”./toc.ide!toc?”>

Help (Manipulate the Help button)

<?Helpfile href=”./howtouse.ide!intro”?>

Title (Document Title)

<?Title href=”TM 9-1425-687-34&P”?>

Color (Give all Frame the same background color)

<?BgColor rgb=”purple”?>

Other colors: aqua, black, blue, cyan, fuchsia, magenta, gray, green, lime, maroon, navy, olive, red, silver, teal, white, yellow, or orange.

Numeric triplet to define the red, green, and blue components of the color can be used a color value (example: “224, 224, 196”).

Hexadecimal representation of the RGB triplet can be utilized as a color value (example: “0xE0E0C4”).

Tag Mapping (Substitute a another tag for one that IADS recognizes)

<?TagMap figure=”graphic” src=”boardno”?>

Toolbar (Controls the location of the toolbar)

<?ToolBar loc=”L” Lock=”1”?>

loc=”L” toolbar located on the LEFT

loc=”R” toolbar located on the RIGHT

loc=”T” toolbar located on the TOP

loc=”B” toolbar located on the BOTTOM

Use Library (SportIce)

<?UseLibrary HREF="support.dll"?>

ODBC Database file (load entities/variables to a database file instead of memory)

<?Use ODBCdatabase?>

IQLINK (Link for IQUEST Task based search)

<?IQLINK PARTNO='1234' REFDES='12345' DESC='VERSION 3.0 AND BEYOND FEATURES AND ENHANCEMENTS' LINKID='IADS V3.0 TOC' TASK='A, D'>

EMBEDWARNINGS (change warning/caution/note into embedded with achknowlegement)

<?EmbedWarnings?>
CHANGE (use change attribute to a tag to display change bar on screen)

<?UseChangeAttributes?>

Frame level

Frame (Break document into logical sections)

<?frame id='helmetpic'?>

Other Attributes

title='Helmet Picture' (title at the frame level)

image='../graphics/Helmet.jpg'(splits screen with graphic on the left, text on the right)

style='..\Styles\Cover.sty' (links a stylesheet with a frame)

hidemenu='Y' or hide='Y' (hides menu bar for that frame)

showno='Y' (hides the frame numbers)

next='.\Chapter 1.sgm!Section1' (manipulates the next button)

previous='.\toc.sgm' help='.\HelmetHelp.sgm' (manipulates the previous button)

index='.\toc.sgm' (manipulates the index button at the frame)

loc='top' (controls the location of the toolbar)

Frame Level Embed Warning (1 for ON or 0 for off)
<?EMBED WARNINGS='0 or 1'?>
Other Processing Instructions

Hotspot (must be closed)

<?hotspot linktype=”message” href=”This message is to show you that the hotspot tag can also be a processing instruction”>………..<?/hotspot>

Alert (Must be Closed)

<?alert id=”w6” type=”warning”>………<?/alert>

Novice (Must be closed)

<?novice>…………..<?/novice>

Calculation

<?calc expr=”grade1 + grade2” result=”total”>

Next

<?next>

Previous

<?prev>

Exit

<?exit>

CALS Table PI’s

<?PUB TABLEALIGN="center | left | right"?>
<?PUB TABLEINDENT="###"?>
<?PUB TBLCOLOFFSET="###"?>
Auto numbering (must have a start and stop processing instruction)

<?autonum start=”1” init=”1”>

………

<?autonum stop=”1”?>

STYLESHEET

Stylesheets are use to format marked-up (tagged) text. This is done through the Stylesheet program located in the IADS program group. It allows the user to set indention, spacing, justification, tabs, font, color, and other format settings. ** Remember that tagging in SGML deals only with “structure”; a stylesheet must be created to set formatting to the document.
creating a stylesheet (New)

· Click the Stylesheet icon from the IADS program group.
· Click Stylesheet menu\New.
· Click the “Save As” button and save the new stylesheet to a directory structure.
· To add a new tag in the stylesheet, click the “New Tag” button and type the element name in the “Tag Name” box.
· Once all the characteristics are added to the new tag, click the “Add” button. The tag will appear in the “Tag, Parent” box.

· Repeat steps 3 and 4 for adding tags in stylesheet.

· Click the “Done” button, after all tags are added to the stylesheet. If the “Cancel” button is clicked, all information added will not be saved, nor will a prompt appear to save changes.
· Click Stylesheet menu\Exit to exit and click “Yes” to save the changes.

associate stylesheet to file

When a document is first viewed in IADS (without a stylesheet associated with a document), IADS will associate a default.sty stylesheet (located in IADS\Styles). A new/different stylesheet should be associated with the document. ** It is recommended to create a new stylesheet and NOT modify the default.sty stylesheet.

Associate a stylesheet at File Properties

· Click Authoring menu\File Properties.

· Click the Document settings tab.

· Click the ellipsis button across from “Stylesheet file” and browse for an existing stylesheet.

· Click the “OK” button.

· IADS will add a processing instruction to the document. This processing instruction will appear above the top-level tag.
Stylesheet Processing Instruction

	<!DOCTYPE IADSDOC [

]>

<?Stylesheet href='.\iadsdoc.STY'?>

<IADSDOC>

Associate a stylesheet at Frame Properties

· Click Authoring menu\Frame Properties.

· Click the ellipsis button across from “Stylesheet file” and browse for a stylesheet.

· Click the “Save Changes” button.

· IADS will add an attribute of style to the frame processing instruction.
Style attribute added to Frame Processing instruction

	<?FRAME ID='Frame 1' STYLE='.\iadsdoc.STY'>

Modify an existing Stylesheet (stylesheet that is associated with a file)
· Click Authoring menu\StyleEditor and modify existing stylesheet

· Click the “Done” button. Changes made through the stylesheet are seen immediately. Reload document does not have to be done.

IADS ADMIN, LOGIN, LOGOUT

Admin

The IADS Admin program is used to create user profiles for logging in to IADS Author/Reader and ZoomView Author/Reader.

· "root" gives access to create/modify all logins.

· Click the Login button and login as “root”

· Once logged in as "root", an existing login is used as a template to create a new user.

· Add/Update User must be clicked before the Default Document button can be accessed.

· Passwords are optional (but not recommended).

· Every user created has an associated .ini file, which is stored in IADS\ETC folder. User specific information is stored in the .ini file.

Login/Logout

The Login and Logout programs allow a user to be permanently logged in to that individual computer. The Login icon creates a permanent login until the Logout icon is double-clicked (meaning when the computer is shut off at the end of the day and turned back on the next day, when the Author/Reader icon is clicked from the IADS program group, the same user will still be logged into IADS).
FILE AND FRAME PROPERTIES

File and frame properties allow an author to make settings to a document that can be applied to every frame within a file, or that can be applied to a single frame within a file. One setting will override another setting, if settings are made at both the file and frame level. Settings that are set at the frame level will always supersede the file level. Changes that are made through the file and frame properties are written to the .sgm/.ide file. ** The system editor must be closed in order for the changes to be saved and written to the file.

File Properties

Properties added at the file level are applied to every frame within the current file. Document titles, stylesheet, domain list are just a few properties that can be added at the file level.
· Click the Authoring menu\File Properties.

· “Document Settings Tab”: Title, Stylesheet file, Domain file and Index.

· “Associated files”: Document help file, Domain table of Contents, Embedded test support DLL, Multiple-domain search and Preload database from file.

File Properties Setting

	[image: image4.png]

· IADS adds a processing instruction to the document when adding file level properties to a document. This processing instruction will (must) appear above the top-level tag.

File Properties setting in .sgm/.ide file

	<!DOCTYPE IADSDOC PUBLIC "-//iads//DTD iads//EN" [

]>

<?Stylesheet href='.\iadsdoc.STY'?>

<?Domainfile href='.\demo30.lst'?>

<?Indexfile href="Introduction to IADS"?>

<?Title href="Interactive Authoring and Display System (IADS) Demonstration File"?>

<IADSDOC>

Frame Properties

Properties added at the frame level are applied only to the current frame added. Frame label, frame title, stylesheet, pageimage (split screen), next and previous are just a few properties that can be added at the frame level.
· Click the Authoring menu\Frame Properties.
Frame Properties setting

	[image: image5.png]

· IADS adds an attribute to the frame processing instruction (or frame tag) when adding Frame level properties to a document. ** Remember that the frame attribute will take precedence over the file level setting for the current frame only; the file level settings will be back in effect on the next frame.
Frame Properties setting in .sgm/.ide file

	<?FRAME ID='Sample Syllabus for IADS BASIC Authoring Training' STYLE='./styles/TABLE.STY'>

NEXT & PREVIOUS BUTTONS
IADS will automatically link the next and previous frames sequentially by default. If desired, the next and previous buttons can be redirected. The first and last frame in a file will need to be redirect.

· Click Authoring menu\Frame Properties.
· Under the “Next/Previous frames” section; click the ellipsis button across from the “Next” to redirect the next button on the tool bar. And/Or click the ellipsis button across from the “Previous” to redirect the previous button on the tool bar.

· Browse to find the files to link. Click the “Select IDREF” button to select a specific frame within the file. Click the “OK” button.

· Click the “Save Changes” button.
· IADS adds a next and/or a previous attribute to the frame processing instructions with the path of the file the buttons are linked to.
Previous button attribute at Frame Properties in .sgm/.ide file

	<?FRAME ID="1-1" PREVIOUS='.\Safesum.sgm!Safesum3'>

Next button attribute at Frame Properties in .sgm/.ide file

	<?FRAME ID="1-7" NEXT='.\Chapter2.sgm!CH2SEC1'>

User Parameters

Set User Parameters allows the user to set preferences based on login. Most user preferences are saved in registry. Default document, toolbar location, background color and text editor are just a few setting that can be made through User’s Parameters.
· Click Options menu\Set User Parameters.
File Properties setting in .sgm/.ide file

	[image: image6.png]

Change default document (Select a New File)
This is the file that will display when logged in as a user.

· Click Options menu\Set User Parameters.

· Click the “Select file” button under Default document file and browse for the new default file.

· Click the “OK” button.
· When the user logs into IADS again, this new document selected will be the default document.

Change default document (select the File currently loaded)
The file is currently opened will display when logged in as a user.

· Click Options menu\Set User Parameters.

· Click the “Use current file” (the file that is currently loaded in IADS) button.

· Click the “OK” button.

· When the user logs back IADS again, this new document selected will be the default document.

Change System Editor (Author Only)
When clicking Authoring menu\System Editor, IADS uses word.exe for the default system editor. The default system editor can be change through User’s Parameters.

· Click Options menu\Set User Parameters.

· Click the “Authoring Tab”.

· Click the browse button under “Application to use as System Editor” to browse for a system editor to use.

· Click the “OK” button.

· Click Authoring menu\System Editor to use the text editor.
TABLE OF CONTENTS

IADS allows the ability to display a window pane like the window pane that displays in Windows Explorer.

· Decide what information is needed to display in the window pane.

· Add the attributes of “label” (words to appear in the TOC pane) and “toclevel” (level of indention such as 1 or 2…) together to the tags that are included in the table of contents.

· The value for the attribute label should be what text will be displayed in the window pane.

· The value for the attribute toclevel should be a numeric value. A toclevel with the value of 1 is the highest level and will appear on the far left side of the window pane. A toclevel with the value of 2 right after a tag with the toclevel of 1 will appear directly under the toclevel 1 in the window pane (toclevel 3 would appear directly under 2 and so on and so forth). A plus (+) sign will appear to the left of the toclevel 1 to expand and contract the top level.

· The “toclevel” attributes must be in the correct order within .sgm/.ide file in order for them to appear correctly in the TOC pane,
Example of the TOC pane and tagging in a .sgm/.ide file
	IADS Author/Reader with Table of Contents Pane

[image: image7.png]
	Tagging for TOC Example

<?tocfile href=".\Helmet.toc"?>

<iadsdoc>

<?frame ID='Cover'?>

<title label="Cover" toclevel="1">OPERATOR'S AND AVIATION UNIT MAINTENANCE MANUAL INCLUDING REPAIR PARTS AND SPECIAL TOOLS LIST</title>

· ** Make sure all files individually appear in their correct order and work properly before creating a domain of TOCs. (See Doc Domain tools to build a TOC domain.)

toggle Window pane using the Index button
If the Index at the file level or at the frame level is not associated with a file, the Index button on the tool bar becomes an on/off switch for the TOC pane.

EDIT MODE

Edit Mode is a feature in the Author program that is referred to as a WYSISWYG method. It assists the author in creating/modifying hotspots, inserting tags, entity references, graphics, and processing instructions. Once Edit Mode is enabled, the tags that are normally seen through the System Editor are now seen on the screen. Changes that are made through Edit Mode are written to the .sgm/.ide file, the system editor must be closed in order for the changes to be saved and written to the file.

Creating Hotspots

· Click Authoring menu\Edit Mode.
· Click with left mouse click and hold, drag over text (highlight) to hotspot.

· Click Edit menu\Define Hotspot (shortcut menu: right mouse click\Define Hotspot).
Hotspot Action Editor

	[image: image8.png]

· Click the “Action Types” drop down menu and select the action for the hotspot.

· Click the “Add” button. Depending on the action selected, follow the screen instructions.

· Click the “OK” button after action type is complete.

· Click Authoring menu\Edit Mode to toggle out of Edit Mode.
· Save Changes.
Edit Mode vs System Editor

Saving through Edit Mode or through System Editor is required in order to have the information written to the .sgm/.ide file.

Edit Mode
Changes made through Edit Mode are written directly to the .sgm/.ide file. **The system editor must be closed when making changes through edit mode.

System Editor

Changes made in System Editor are written directly in the .sgm/.ide file. **Edit Mode should not be enabled while making changes in System Editor.
HOTSPOT ATTRIBUTE EXAMPLES

GoTo IDREF (Link to Another Frame)

<HOTSPOT href="./demo/Alert.sgm!ALERT">

Message

(Link to a Message Box)

<HOTSPOT linktype="message" href="This is a message" title="Optional Title">

 Pop Up Message add the attribute popup="1"

Display Image (Link to a Graphic in ZoomView)

<HOTSPOT linktype="picture" href=" ./Demo/Chart1.pic">

Execute a Program

<HOTSPOT linktype="execute" href="../Windows/Write.exe Example.sgm">

Assign a Value to a Variable

<HOTSPOT linktype="assign" variable="Section1" value="1" repaint="1">

Assign a Time/Date Stamp

<HOTSPOT linktype="assign" stamp="time">

Launch RPSTL (Link to the RPSTL Program)

<HOTSPOT linktype="rpstl" href="TM1794403&P -F 1,1">

Play a Multimedia File (Play Sound/Video)

<HOTSPOT linktype="play" href="../Media/Video.avi">

Next idref (Link to the Next idref)

<HOTSPOT linktype="next">

Previous idref (Link to the Previous idref)

<HOTSPOT linktype="prev">

Exit the Application (Exit IADS)

<HOTSPOT linktype="exit">

Query User

<HOTSPOT linktype="query" text="What is your name?" result="name" default="Leslye">

Measurement (Take a Measurement Using the Digital Multimeter Capabilities)

<HOTSPOT linktype="measure" type="VDC">

Calculation

<HOTSPOT linktype="calc" expr="c_temp * 9/5 + 32" result="f_temp" decimals="2">

Save User Responses

<HOTSPOT linktype="save">

Diagnostic Test

Diagnostic testing is performed using the SPORT/MSD ICE kit.

Pop Link Stack

<HOTSPOT linktype="popstack">

Web Link

<HOTSPOT linktype="web" href=” ------“>

ID/IDREFS

ID attributes can be used to reference a particular area of interest on a frame. This is accomplished by adding a unique ID attribute to a tag. The ID must be unique from any other ID attribute in the document. If a referenced ID is located at the bottom of a scrolling frame, the frame will automatically scroll to the referenced area and place a yellow arrow on the ID area. IADS will accept ID attributes on almost all tags (some exceptions include a graphic or hotspot tag).

Example of Adding an ID Attribute to a Tag

	<title ID="Step 4">This is an example of using an ID attribute.</title>

Example of Referencing an ID'd Tag

	<?HOTSPOT href="Step 4"?>Operating<?/HOTSPOT?>

OR

<?HOTSPOT href=".\Demo.sgm!Step 4"?>Operating<?/HOTSPOT?>

Tagging to Create a Hotspot Reference and How it Appears in IADS When Clicked

	<title ID="Build">Build Engine</title>

<para>Text.</para>

<para>Text.</para>

<para>Reference back to <?HOTSPOT HREF="Build"?>Build Engine <?/HOTSPOT?>.</para>
	[image: image9.png]

CHANGE TAGS

Changes within a document are indicated with a vertical bar next to specified text. In a technical manual the bar appears on the right margin from the text. In IADS the bar appears on the left margin from the text.
· To display a bar for changed text, surround the text with a set of <change></change> tags as seen below.

Example of a Change Tag

	<file>

<para>

<change>This is an example of a change bar. </change>

</para>

</file>
	[image: image10.png]

Change Processing Instruction

Another method of displaying the change bar can be done by adding a change attribute to a tag. In combination with using the change attribute to a tag, a processing instruction <?Usechange attributes?> must be placed above the top-level tag. The change attribute value of 1 will turn the change on.

Example of a Change processing instruction

	<?Usechange attributes?>

<file>

<para change=”1”>

This is an example of a change bar.</para>

</file>
	[image: image11.png]

ALERTS

Warnings, Cautions, and Notes can be displayed as Embedded text (no acknowledgement required), as Pop-up Alerts (acknowledgement required), or as an Embedded Alert (acknowledgement required).

Text Alerts

Embedded warnings are shown within the text displayed on the screen and can be controlled by the Stylesheet to surround the text with a colored box. They appear as they actually occur in the technical manual above the associated text. There is no acknowledgement required for this type of warning/caution/note.

Text Alert (Basic)

Below is an example of an embedded text alert. There is a <warning> tag, a <title> tag and a <para> tag. Through the stylesheet there is a parent/child relationship with title and warning to make the warning title appear red.

Example of an Embedded Text Alert

	<warning>

<title>WARNING</title>

<para>This is an example of a Warning displayed on the screen with text..</para>

</warning>
	[image: image12.png]

Text Alert (with Stylesheet settings)

Below is an example of an embedded text alert with boxed text stylesheet setting. There is a <warning> tag and a <para> tag but no <title> tag. Through the stylesheet the boxed text setting is to create the red striped box with the warning title.

Example of an Embedded Text Alert with Stylesheet settings

	<warning>

<para>This is an example of an embedded text warning.</para>

</warning>
	[image: image13.png]

Embedded Alerts

Embedded alerts are warnings and cautions that appear above the associated text, but require acknowledgement before navigating anywhere within IADS.
· To create embedded functionality, first tag all warnings and cautions with <warning> or <caution>. Then, insert the processing instruction <?embedwarnings?> before the top level tag (<file> in below example case). This processing instruction will display all Warning and Caution tags in a consistent manner with MIL-STD-40051A. **Notes do not require acknowledgement.
	<?embedwarnings?>

<file>
<?frame ID="Basic Training"?>

<caution>

<para>This is an example of an embedded alert (Caution).</para>

</caution>

</file>
	[image: image14.png]

Pop-Up Alerts

Pop-up alerts are boxes that appear on the screen before the actual text/graphics are displayed on the screen. They must be acknowledged before continuing with the IETM and the underlying frame to be visible.

· Pop-up alerts are required per MIL-STD-40051A.

· When there are multiple alerts on the same frame they must appear in the following order according to MIL-PRF-87268A: Warnings, Cautions, and Notes.

· The default type is warning.

· The alert will be ignored by the parser, however the para tag, inside the alert tag, will not be ignored by the parser; therefore the alert should be placed within the document where a para tag is accepted according to the DTD (see PARSING on page 14). Regardless of the pop-up alert placement within the frame in the System Editor, the alert will pop-up first and require acknowledgment before the text is displayed.

Example of a Pop-Up Alert

	<alert id=”w1” type=”warning”>

<para>This is an example of a warning pop-up alert.</para>

</alert>

OR

<?alert id="w1" type="warning"?>

<para>This is an example of a Warning pop-up alert as a processing instruction.</para>

<?/alert?>
	[image: image15.png]

· When an alert has been defined, it can be referenced throughout the file by using an idref attribute. A closed tag is not used. Alerts will not pop-up when using the idref attribute and coming from a frame with the same referenced alert.

Example of a Referenced Alert

	<?alert idref="c2"?>

Additional Alert Attributes

· Pop-up alerts can contain an additional attribute to identify a specific security setting. Security alerts use the attribute of security within the alert tag. Unclassified (U) is the default attribute for security. However, Confidential (C), Secret (S), and Top Secret (T) can be used.

Examples of Attributes Security='C', Security='T', Security='S' Used on an Pop-Up Alerts

	<?alert id='c1' security='C'?>

<para>Pop-up Alert with security setting changed.</para>

<?/alert?>
	[image: image16.png]
	[image: image17.png]
	[image: image18.png]

· The appearance of a pop up can be changed through the use of two optional attributes, style and icon. The style attribute assigns a Stylesheet to the text that displays within the alert, and the icon attribute assigns a different icon to appear at the top of the pop-up alert.

Pop-up Alert with an Assigned Stylesheet and Icon Attribute

	<?alert id="w1" STYLE="./Styles/Alert.sty" ICON="./Graphics/Chemical.bmp"?>

<para>Pop-up Alert with style and icon attributes added.</para>

<?/alert?>
	[image: image19.png]

Disable Pop-up alerts and Embedded Alerts (for Authoring ONLY)
Pop-up alerts and embedded alerts that required acknowledgements can be disabled or turned off in the authoring program ONLY! They will still be enabled for the reader program.

· Click Authoring menu\Set User’s Parameters.

· Click the “Authoring Tab”.

· Click the check box for “Allow Embedded Warning, Caution and Note to be skipped during authoring”.

· Pop-up alerts and embedded warning will no longer be activated in the authoring program.

CALS TABLES

Commerce At Light Speed (CALS)

IADS began supporting the CALS Table Model with version 2.4 released in February 1997. CALS tables are very attribute driven, which means most formatting is done through attributes rather than through the stylesheet. IADS supports most of the functionality of the CALS Table Model. IADS currently does not support the table attributes char, charoff, pgwide, valign.

Example of a basic CALS table

	<table>

<tgroup cols=”2”>

<colspec colwidth=”2”>

<colspec colwidth=”4”>

<tbody>

<row>

<entry>AM Temp</entry>

<entry>PM Temp</entry>

</row>

</tbody>

</tgroup>

</table>

CALS Processing Instructions

CALS Tables are left justified on the screen. Processing instructions can be put at the beginning of the table before the <table> tag to align a table other then left. Numeric values default to pixels in the above examples. To change to inches include an “I” after the numeric value.
Processing Instructions used to align CALS table on the screen

	<?pub tablealign="center"?>

<?pub tablealign="right"?>

Processing Instructions used to align CALS table on the screen

	<?pub tableindent=".25i"?>

Processing Instructions used to pad cells

	<?pub tblcoloffset="6"?>

columns Evenly proportional with screen size
The asterisk “*” is used in conjunction with numeric values relating to column widths and/or table widths to evenly proportion a table based on the screen resolution.
Example of a basic CALS table

	<table>

<tgroup cols=”2”>

<colspec colwidth=”2*”>

<colspec colwidth=”4*”>

<tbody>

<row>

<entry>AM Temp</entry>

<entry>PM Temp</entry>

</row>

</tbody>

</tgroup>

</table>

CALS Table ELEMENT and ATTRIBUTE Definitions

table – defines the CALS table

frame – whether the frame border will appear ("none" or "all")

colsep – whether the table will have column separators or not (0 for no and 1 for yes)

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

tgroup – defines the "table group"

cols – the number of columns within the table

colsep – whether the table will have column separators or not (0 for no and 1 for yes)

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

align – where the text entries will be aligned in the columns

colspec – defines "column specification"

colname – the "name" of the column

colwidth – the width of the column (defaults to inches although pi, cm, mm, and * (proportional) may be used) If proportional tables are defined <?pub tablealign='center' or 'right'?> cannot also be used.

colsep – whether the table will have column separators or not (0 for no and 1 for yes)

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

align – default alignment of columns contents

spanspec – defines a column "span specification"

namest – the "name" of the column where the span will begin

nameend – the "name" of the column where the span will end

spanname – the "name" of the spanned columns

colsep – whether the table will have column separators or not (0 for no and 1 for yes)

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

align – default of where the "span" will be aligned

thead – defines a "table header"

tfoot – defines a "table footer"

tbody – defines a "table body"

row – defines a horizontal "row" of information

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

shading – applies specified color to the entire row (color names, RGB values, or Hexadecimal color reference values may be used)

entry – defines an individual cell within a table

colname – the "name" of the column

namest – the "name" of the column where the span will begin

nameend – the "name" of the column where the span will end

spanname – the "name" of the spanned columns

morerows – the number of following rows where that particular entry will be skipped (vertical spanning)

colsep – whether the table will have column separators or not (0 for no and 1 for yes)

rowsep – whether the table will have row separators or not (0 for no and 1 for yes)

align – where the "entry" will be aligned (overrides colspec settings for this one entry)

shading – applies specified color to a cell
rotate – allows cell contents to display vertically (0 for no 1 for yes)

IADS CALS Table Model (Copied From the DTD)

<!ELEMENT table - - (title?, tgroup+) -(table) >

<!ATTLIST table

frame (top|bottom|topbot|all|sides|none)
#IMPLIED

colsep

NUMBER
#IMPLIED

rowsep

NUMBER
#IMPLIED>

<!ELEMENT tgroup - O (colspec*, spanspec*, thead?, tfoot?, tbody)>

<!ATTLIST tgroup

cols

NUMBER
#REQUIRED

colsep

NUMBER
#IMPLIED

rowsep

NUMBER
#IMPLIED

align (left | right | center)
#IMPLIED>

<!ELEMENT colspec - O EMPTY >

<!ATTLIST colspec

colname
NMTOKEN
#IMPLIED

colwidth
CDATA

#IMPLIED

colsep

NUMBER
#IMPLIED

rowsep

NUMBER
#IMPLIED

align (left | right | center)
#IMPLIED>

<!ELEMENT spanspec - O EMPTY >

<!ATTLIST spanspec

namest

NMTOKEN
#REQUIRED

nameend
NMTOKEN
#REQUIRED

spanname
NMTOKEN
#REQUIRED

align (left | right | center)
#IMPLIED>

<!ELEMENT thead - O (colspec*, row+)>

<!ELEMENT tfoot - O (colspec*, row+)>

<!ELEMENT tbody - O (row+)>

<!ELEMENT row - O (entry+)>

<!ATTLIST row

rowsep

NUMBER
#IMPLIED

shading

CDATA

#IMPLIED>

<!ELEMENT entry - O (#PCDATA|hotspot|change|%async)*>

<!ATTLIST entry

colname
NMTOKEN
#IMPLIED

namest

NMTOKEN
#IMPLIED

nameend
NMTOKEN
#IMPLIED

spanname
NMTOKEN
#IMPLIED

morerows
NUMBER
#IMPLIED

colsep

NUMBER
#IMPLIED

rowsep

NUMBER
#IMPLIED

align (left | right | center)
#IMPLIED

shading

CDATA

#IMPLIED

rotate

NUMBER
#IMPLIED>

GRAPHICS

Graphics can be displayed four different ways in IADS. They can be displayed through ZoomView, split screen, embedded graphic and icons (or inline with the text on the screen).

ZoomView
ZoomView is a graphic viewing program that comes with IADS. It is not a graphics editing tool. ZoomView resizes a graphic evenly and proportionally to fit the screen.

Supported graphic types

	· .bmp
	· .cgm
	· .gif
	· .pcx
	· .tif

	· .cal
	· .g4
	· .jpg
	· .png
	· . wmf

ZoomView Reader

ZoomView Reader allows end-users to view graphics and create redlines to mark-up drawings.
Creating Redlines
Users are able to mark up the drawing with notes, boxes, circles and arrows. When redlines are created they are stored in the \IADS\ETC\ with an .rdl. This .rdl file assumes the name of the original graphic viewed. The .rdl file stores multiple redlines based on and sorted by user logins. To create redlines on a graphic; the users must first be logged into IADS.

· Click File menu\Open and browse for a graphic.

· Click “Redlines” menu.

· To select the type of redline to mark up, click a radial button from the “Redline Type to add” section.
· Click the “OK”. The mouse will turn to an invisible pencil.

· To mark-up the graphic, left mouse click on the graphic and drag in the direction the marking or redline should cover.

Redlines on graphic

	[image: image20.png]

Change Redline color/Thicken Redline lines/Delete redlines

· Click Redline menu

· Change Redline Color: Click the “Settings” button to change line color and thicken lines.

· Delete Redlines: Click the “Delete Selected Redlines” radio button. The mouse will turn to an invisible cross hair box. Left mouse click over redlines to delete.

· Stop Redline or Delete: Click the “Off” radial button under Redline types to add. The mouse will turn back to an arrow. This will stop both Redlines and Deleting.
ZoomView Author

ZoomView Author allows authors to not only view graphics, but also associate titles, next and previous graphics and create hotspots on graphics. The graphic is not modified, but instead, a .pic file is created which becomes an overlay to the original graphic.
Creating a .PIC file
Before characteristics can be associated with a graphic, a .pic file must be created first.

· Click File menu\Open and browse to select the original graphic.

· Click File menu\Save As. ZoomView will automatically make the extension of the file a .pic and store this new file with the original graphic.

· The .pic and the graphic that is associated with .pic should always been stored in the same folder.

· Click File menu\Save after adding or making changes to the .pic file. ** DO NOT click Save As to a .pic file this will change the associated graphic and make the drawing disappear!

Creating Hotspots on Graphics

· Click File menu\Open and browse to select the original graphic.

· Click Edit menu\Enable Hotspot Editor (the mouse turns to a right angle ruler).
· Click with left mouse click and drag to the right (a box will appear in red).
· Move mouse to the center of the hotspot box (the mouse turns to the letter “E”)

· Left mouse click and select “Edit Action” (this screen is the same Hotspot Action Editor from hotspots in IADS)

· Click the “Action Types” drop down menu and select the action for the hotspot.

· Click the “Add” button. Depending on the action selected, follow the screen instructions.

· Click the “OK” button after Action Type is complete.

· Click Edit menu\Disable Hotspot Editor.
· Click File menu\Save (.pic file click “Save”, original graphics click “Save As”).
Move Hotspots in ZoomView
· Click Edit menu\Enable Hotspot Editor.
· Move mouse to the center of the hotspot box (the mouse turns to the letter “E”). The action of the hotspot will be indicated in the status bar at the bottom of the screen.
· Left mouse click inside hotspot box and click “Move”. Mouse will now be a cross-hair bow.

· Move hotspot to location
· Left mouse click to anchor hotspot in the new location.
Resize Hotspots in ZoomView
· Click Edit menu\Enable Hotspot Editor.

· Move mouse to the center of the hotspot box (the mouse turns to the letter “E”). The action of the hotspot will be indicated in the status bar at the bottom of the screen.
· Left mouse click inside hotspot box and click “Move”. Mouse will now be a diagonal arrow.

· Resize moving from the lower right corner of the hotspot box to the upper left corner.

· Left mouse to stop and save new size of hotspot.

Copy Hotspot Actions
· Hover over hotspot without enabling hotspot editor. Mouse will turn to a hand.

· To Copy the action: Click “Ctrl” and “C”. This is done while the mouse is still a hand.
· Left mouse click in the area that the action will be pasted. This will give ZoomView a “general” idea of where to paste the hotspot.

· To Paste the action copied: Click “Ctrl” and “V”. The hotspot may not be placed exactly where it was intended. You may have to search for it but it should be in the “general” area.

Split Screen

IADS allows a graphic to be displayed on the left side of the screen and the text displayed on the right side of the screen. This is done at the frame level in a document. Split screen provides the user with similar ZoomView functionality. The graphic is evenly and proportionally sized the split screen.

View graphic through Split screen

· Click Authoring menu\Frame Properties.
· Click the ellipses button across from “Pageimage File” and browse for the graphic to display.
· Click the “OK”.

· Click the “Save Changes” button.

· IADS adds an attribute to the frame processing instruction (or frame tag) in the document. ** Remember that the split screen attribute is only for the current frame, the next frame will not have a split screen effect if the attribute is not applied.
Frame Properties setting in .sgm/.ide file

	<?FRAME ID='Sample Syllabus for IADS BASIC Authoring Training' IMAGE='./graphics/logo.pcx'>

· A small camera will appear in the upper right corner of the screen on a split screen frame. If there are other hotspots linked to a graphic on this frame, the screen on the left will refresh with the new image when the hotspot is clicked.

Embedded

IADS allows a graphics to be displayed as an embedded graphic along with the text on the screen. Hotspots made through ZoomView are functional in an embedded graphics (.pic file must be selected as the embedded graphic). ** The graphic tag is an “empty” tag and should not be closed.

View graphic through Embedded

· Click Authoring menu\Edit Mode.
· Place the cursor after the closed tag of where the graphic is to appear on the screen.

· Click Edit menu\Insert Graphic.
· Click the ellipses button across from “File” and browse for a graphic.

· Click the “include relative path” radio button.

· Click the “OK” button.
· Click Authoring menu\Edit Mode and save changes.
· A graphic tag will be added in system editor.

Resize or Changes to Embedded Graphic

Graphic that are embedded are viewed their actual size, they are not evenly portioned like in ZoomView. Additional attributes will need to be added to size the graphic down on the screen.

· Click Authoring menu\Edit Mode.
· Double click on the graphic.
· Make changes to graphic

· Click the “OK” button.

· Click Authoring menu\Edit Mode
· Save changes.
Icon

IADS allows a graphic to be displayed within text in a sentence on the screen. This is done through an icon that appears inline with the text. Icon graphics can only be a .ico or a .bmp extensions.

View graphic through inline

· Click Authoring menu\Edit Mode.

· Place the cursor where the icon is to appear on the screen within the text.

· Click Edit menu\Insert Graphic.

· Click the “OK” button.

· Click Authoring menu\Edit Mode and save changes.
· Click Authoring menu\System Edit and browse for the graphic tag that was entered.

· Change the graphic attribute “boardno” to “icon” and save changes.

· Click Authoring menu\Reload Document to view the icon on the screen.

DOC. DOMAIN TOOLS

The Doc Domain Tool acts like a ‘batch’ tool. It allows a group of files to be grouped together into one file. A domain list provides a user with the ability to search across multiple files (or an entire IETM). It also provides a faster method for executing the Link Verification Process (See Link Verifier). A domain list should include all the *.sgm/*.ide files the user will need to search across. The file will have an .lst extension and is plain ACII text. Other functions of the Doc. Domain Tools utility are: building word index for search purposes, creating a domain table of contents, and converting .sty or .pic files to the current format.

Order to build Domains

IMPORTANT: ALL DOMAINS BUILT MUST BE DONE THIS ORDER!

1) Build Doc Domain file (.lst).
2) Arrange the files listed in the .lst file according to how they would appear in the manual.

3) Associate domain file with all files listed in the .lst file.

4) Build Word Index file.
5) Build TOC domain.
6) Associate TOC domain with all files listed in the .lst file.

How to build each domain is listed below.
Building a DOMAIN

It is recommended to store domains in a separate folder within the working directory structure, so that the paths for multiple domains do not change.

· Click Authoring menu\Doc Domain Tools.
· Click the ellipsis button under the “Domain directory path” and browse for the directory structure to build the domain files from.

· Check the “Build Domain List” check box.

· Click the radio button under “IADS document files” for the file extension to search for.

· Click the ellipsis button under “Domain file to be used” and browse for where the domain file will be stored. In the browse box across from “File Name”, type in the name of the domain file to be built. This file will have an .lst extension. Click “Yes” that you want this file to be created.

· Click the “Start” button on the Domain tools progress screen.
· Click the “Close” button, when the process is finished.
· A file was built with the .lst extension in the directory that was selected. The domain builder lists the files in alphabetical order. In a text editor, open the domain file and arrange the files in the order that they would appear in the manual. Save the changes.
· ** The order of the files is important, since this will be the order that all other domains will read off of and use.

Associate DOMAIN file with .sgm/.ide

** The domain file that was built must be associated with each file listed inside of the domain file.

· Click File menu\Open and browse to open one of the files listed in the .lst file.

· Click Authoring menu\File Properties. The association must be done at the file level so that every frame within each file is including in the domain.

· Click the ellipsis button across from “Domain File” and browse for the .lst file that was built.
· Click the “OK” button.
· IADS will put a processing instruction into the .sgm/.ide file which will appear above the top-level tag in the document.
	<?Domainfile href='.\demo30.lst'?>

<iadsdoc>

· ** Repeat the first three steps with each file listed in the domain file.

Building a Word Index

Building a word index creates a list of all words within a document. It will allow the users to search on all possible words that are listed in the domain.

· Click Authoring menu\Doc Domain Tools.
· Make sure that the path for “Domain Directory Path”, the path for “Domain file to use” and file name are correct, if they are, uncheck the “Build Domain file” checkbox.

· Check the “Generate Domain word index” checkbox.

· Click the “OK” button.

· Click the “Start” button on the Domain tools progress screen. Click the “Close” button, when the process is finished.

· A file with the extension of .ndx is created for each file listed in the domain. This file should be stored and kept in the same folder as the files for the document (they are buddies now). A file with the extension of .wls is created in the folder that the .lst file is stored. This file should be stored and kept in the same folder as the .lst file is for the document. **Word index files do not need to be associated to each file listed in the .lst.
Building a TOC Domain

Building a TOC Domain creates a domain for the TOC window pane. Without a domain built for the TOC, only one file at a time will be viewable in the window pane.

· Click Authoring menu\Doc Domain Tools.

· Make sure that the path for “Domain Directory Path”, the path for “Domain file to use” and file name are correct, if they are, uncheck the “Build Domain file” checkbox and “Generate Domain word index” checkbox.

· Check the “Generate domain TOC listing file” checkbox.

· Click the “OK” button.
· Click the “Start” button on the Domain tools progress screen. Click the “Close” button, when the process is finished.

· A file with the extension .toc is created in the directory where the .lst file is stored. This file should be stored and kept in the same directory as the .lst file is stored.

Associating the TOC DOMAIN

** The TOC domain file that was built must be associated with each file listed inside of the domain file.

· Click File menu\Open and browse to open one of the files listed in the .lst file.

· Click Authoring menu\File Properties. The association must be done at the file level so that every frame within each file is including in the domain.

· Click the “Associated Files” tab.

· Click the ellipsis button across from “Domain Table of Contents data file” and browse for the .toc file that was built. It should be located in the same folder as the .lst file.

· Click the “OK” button.

· IADS will put a processing instruction into the .sgm/.ide file which will appear above the top-level tag in the document

	<?TOCfile href='.\helmet.toc'?>

<iadsdoc>

· ** Repeat these first three steps with each file listed in the domain file.

NOTE: IF ANY CHANGES ARE MADE TO THE .LST FILE “AFTER” ALL OTHER DOMAINS ARE BUILT THE DOMAINS .WLS and .TOC WILL NO LONGER WORK

IF ANY CHANGES ARE MADE TO THE WORD INDEX FILE (WORDS ADDED TO DOCUMENT) OR TOC PANE (ORDER CHANGE) THEY WILL NOT SHOW THE CURRENT CHANGES.
THE .WLS .TOC AND.NDX FILES WILL NEED TO BE DELETED FROM THE FOLDER AND REBUILT.
LINK VERIFIER

Link Verifier is an IADS program that will verify all links in .sgm, .ide, or .pic. This is one of the last steps that should be done to ensure that all links are valid. Any changes made to the IETM after link verifying may make it necessary to run link verifier again.

· Link Verifier does not check for logically links, only if the file the link is valid and does really exist.
Running Link Verifier

· Click the Link Verifier icon from the IADS program group.
· An individual file can be selected from the “Add files” button, or a domain file can be selected from the “Add Domain list” button.

· Click the “Select All” check box once files are loaded. This will select all files in the “Files to Verify” box. When first doing a link verify it may be better to select all files and run it rather then verify each individual file.

· Under the “Verify Output” section, across from “File”, the link verifier will take the last file name in the Files to Verify box and place the file name with an .LVO extension on it. You may want to rename this file according to the system that is being verified and still keep the .LVO extension.

· Click the “Start Verify” button.

· The “Link Verification Status” screen will show each file being verified and if any warnings or errors were found within the file.

· Click “View Output file” button to view warnings or errors.

· Warnings mean that a link works right now but may not work in a different situation. Errors mean that the link does not exist.

· Click the “Cancel” button.

· In the Files to Verify box, click on and highlight one of the files that a warning or error was found in and click Edit file button. This will take you directly into the System Editor to the file that was highlighted.

· Fix the warning or error, then come back into Link Verifier and rerun it until your status is 0 warnings and 0 errors.

DOCUMENT INSTANCES, CATALOGS, AND ASSOCIATED FILES

A Document Instant is a document tagged to a DTD. It consists of ALL files that make up or are called within a document. It may contain the following: entities, graphics, other files, even the DTD.

CATALOG
A CATALOG is a file that acts like an index. It contains a list of public identifiers for files that are needed in the document instance. This CATALOG file is of text type and does not contain an extension.

Main CATALOG

The main CATALOG file must be located in the same directory as the DTD file(s). It lists the specified DTD, all supporting ENTITY files with their location(s) and DTD Declaration.
Example of a CATALOG (main)

	SGMLDECL "IADS.dec"

PUBLIC "-//iads//DTD iads//EN" "iads.dtd"
PUBLIC "ISO 8879-1986//ENTITIES Added Math Symbols: Arrow Relations//EN" "ISOamsa.ent"

PUBLIC "ISO 8879-1986//ENTITIES Added Math Symbols: Binary Operators//EN" "ISOamsb.ent"

PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN" "ISOlat1.ent"

PUBLIC "ISO 8879-1986//ENTITIES Greek Symbols//EN" "ISOgrk3.ent"

PUBLIC "ISO 8879-1986//ENTITIES Numeric and Special Graphic//EN" "ISOnum.ent"

PUBLIC "ISO 8879-1986//ENTITIES Publishing//EN" "ISOpub.ent"

PUBLIC "ISO 8879-1986//ENTITIES General Technical//EN" "ISOtech.ent"

Breakdown of a public identifier within a CATALOG

	 Registered Public Identifier File path

PUBLIC "-//iads//DTD iads//EN" "iads.dtd"

Public Identifier

A PUBLIC identifier within a DOCTYPE statement tells IADS to look for a CATALOG file. Copy the PUBLIC identifier from the main CATALOG file and paste it after the top-level tag within a DOCTYPE statement. Do not copy the file path that goes with the PUBLIC identifier, only the PUBLIC identifier should be copied.
Example of a DOCTYPE Statement with a Public Identifier in .sgm/.ide

	<!DOCTYPE IADSDOC PUBLIC "-//iads//DTD iads//EN" [

]>

IADS’ Process

IADS first looks for a CATALOG file in the same folder where the .sgm/.ide resides. If it is not found there, IADS will then look up one directory from the .sgm/.ide for a folder named "DTD". If the CATALOG is not found there, IADS will resort to the IADS/DTD folder and will use the IADS CATALOG and iads.dtd.

· Once a .sgm/.ide file has a DTD properly associated to it, the two separate files can now be considered "joined". They should no longer be viewed as separate files even though they electronically exist separately.

PARSING

Parsing is a final step an author takes to ensure that the DTD has been followed. IADS uses a separate piece of software to validate the SGML document against a specified DTD called NSGML. To access the NSGML parser click Authoring menu/NSGML parser. The parser first validates the DTD and then validates the .sgm/.ide file selected. One error found by the parser may report a chain reaction of additional errors, therefore errors should be fixed one at a time starting at the top and the document should be re-parsed after each correction. Any changes made to the IETM after parsing may necessitate re-parsing.
Excerpt from a DTD and .sgm File

	!ELEMENT body -- (para | subpara1)
	<body>

</body>

<para>Paragraphs are only allowed in the body.</para>

NSGML Parser Requirements

The NSGML parser limits you to having only one DOCTYPE statement in your document instance. By default, NSGML parser looks for the DOCTYPE statement in the DTD.

· The NSGML parser will look for the main CATALOG file in the same folder as your .sgm/.ide. If the main CATALOG and DTD files are located in a separate directory from the .sgm/.ide file, a "pointer" CATALOG file must be created.
Pointer CATALOG

When building a “pointer” CATALOG the word CATALOG must be the first to appear. A minimum of once space should follow with the relative path of where the main CATALOG resides. This CATALOG file, like the main CATALOG file is of text type and does not contain an extension. Since the NSGML parser only looks for a CATALOG file in the same directory as the .sgm./.ide files, the “pointer CATALOG must be stored in the same directory as the .sgm/.ide file to "point" to the main CATALOG file.
Example of a Pointer CATALOG

	CATALOG ..\DTD\CATALOG

Parsing with a public identifier
When using the NSGML parser with a PUBLIC identifier in your DOCTYPE statement, the DOCTYPE statement in the DTD must be commented out. Once the DOCTYPE statement in your DTD is commented out, the DTD should not be selected. Remember once this is done the two files are now considered “jointed”.

NSGML Parser with a PUBLIC Identifier

	.sgm/.ide Excerpt

<!DOCTYPE iadsdoc PUBLIC "-//iads//DTD iads//EN" [

]>
	DTD Excerpt

<!-- <!DOCTYPE iadsdoc [-->

…………………………………………………………..

<!--]> -->

	[image: image21.png]

Parsing without a public identifier

When using the NSGML parser without a PUBLIC identifier in your DOCTYPE statement, the DOCTYPE statement in your .sgm/.ide file must be commented out. Once the DOCTYPE statement in your .sgm/.ide is commented out, the DTD will have to be selected in the NSGML parser.
NSGML Parser without a PUBLIC Identifier

	.sgm/.ide Excerpt

<!--<!DOCTYPE iadsdoc PUBLIC "-//iads//DTD iads//EN" [

]>-->
	DTD Excerpt

<!DOCTYPE iadsdoc [

…………………………………………………………..

]>

	[image: image22.png]

Parsing Errors
When viewing the file to be parsed, make sure your screen is viewed at the maximum so that all lines and spaces are seen.

Example of an error for parsing.

	C:\IADS\SGMLS\NSGMLS.EXE:C:\IADS\DEMO\..\dtd\iads.dtd:9:54:E: non SGML character number 147

· From the first C:\ to the colon (:) before the next C:\, is the path for the NSGML parsers’ executable.

· From the second C:\ to the colon (:) before the numbers, is the path for the file or dtd being parsed.

· The numbers that follow are where the error is located. The first number is the number of rows down that the error was found. This includes spaces. The second number is the number of characters over from the left that the error was found.

· The letter E that follows the numbers stands for error which is what appears next. This tells exactly what the error is. ** Remember the NSGML parser, parses the DTD first then the file. In the example below the error was found in the DTD.
RPSTL AUTHOR/READER

Repair Parts and Special Tools List

IADS contains a Repair Parts and Special Tools List (RPSTL) database program. The RPSTL Author Program is used to generate RPSTL database files for use with the RPSTL Reader program.

To create a RPSTL database the author must two things:

· All graphics in acceptable ZoomView format

· Section II data (data for spares and repair parts) electronically.

** This information must be located in the same folder.

Section2.tag File

If the Section II data is kept in a specialized database (CCSS or LSAR) it may be extracted and converted into an SGML tagged file by Team IADS. If the parts data exists only in paper format or another "general" database format, it will be necessary to hand-generate the Section II SGML file.

Example of a LSAR file.

	M98B8GA001 A0136597012A1000 324 1TACT ELECT RECON PR00001A

M98B8GA001 80058AN/TSQ-90E(V)1 52 02A

M98B8GA001 5820014540338 EA0105175700EA010517570000110001XCFDD C18 7C001B

M98B8GA001 0000001000010000001000000000 000000 00001C

M98B8GA001 E 00000000000000000001D

M98B8GA001 000 3H 01E

M98B8GA001 T 01H

M98B8GA001 0A10000000000000 00000 000000 0 00000 01J

M98B8GA001 0A100000 01K

File Requirements

· Plain ASCII text format

· Standard DOS 8.3 filename

· Sec2.tag is default filename and extension (but can be different)

Section II tag files contain multiple group definitions. They contain one group definition for each figure in the RPSTL. There can only be one figure for every group. Each group definition has a group information section and an item entry section.

Example of a tagged sec2.tag file.

	<group>

<desc>GROUP 00

<desc>AN/UPM-155

<desc>FIGURE 1 AN/UPM-155 RADAR TEST SET

</group>

<fig>1<item>1<smr>XBHHD<fscm>57057<stock><part>8020001054-1<desc>DRAWER ASSEMBLY, 1A3 (Note: For parts, see Figure 2)<qty>1

<fig>1<item>2<smr>XBHHD<fscm>57057<stock><part>8030005606-1<desc>POWER PANEL ASSEMBLY, 1A1 (Note: For parts see Figure 4)<qty>1

<fig>1<item>3<smr>PAHHD<fscm>57057<stock>6625-01-416-1007

<part>8020001073-1<desc>OSCILLOSCOPE, 1A2 (Note: For parts see Figure 5 and 6)

<qty>1<unitprice>10720.00<UI>EA

<fig>1<item>4<smr>PAHHD<fscm>57057<stock>7025-01-416-1014

<part>8020001056-1<desc>DISPLAY UNIT, 1DS1<qty>1<unitprice>6261.00<UI>EA

<fig>1<item>5<smr>XBHZZ<fscm>57057<stock><part>8020001057-1<desc>FRONT COVER ASSEMBLY, 1MP1 (Note: For parts, see Figure 7)<qty>1

Group Information Section

· Each group information section must have a <group> tag and at least one <desc> tag.

· A group code is required and can be specified as part of the <desc> tag or by using the <fnccode> tag.

· A group code can only be used once and must be unique.

· Multiple <desc> tags can be used for long group titles or descriptions.

	Tag Char
	Description
	Field Name
	Max #

	<group>
	Starts a Group
	Functional Group
	0

	<desc>
	Contains Group Code
	Group Code
	15

	<desc>
	Contains Group Description
	Group Description
	225

	<nha>
	Used for Next Higher Assembly
	(size is the same as the group code of next higher assembly)

	</group>
	Ends Group Information – Use of this end tag is recommended
	
	

Item Entry Section

There are four required tags for an item entry: <fig>, <item>, <part>, and <desc>.

· The <fig> tag is always the first tag in a valid item entry.

· The remaining item tags can be entered in any order as long as they come after the <fig> tag.

· When another <fig> or <group> tag appears, they will terminate the current item entry.

	Tag Char
	Description
	Field Name
	Max #

	<fig>
	Figure Number
	Figure
	6

	<item>
	Item Number

	Item
	6

	<part>
	Part Number
	Part Number
	50

	<desc>
	Part Description
	Description and UOC
	250

	<smr>
	Source, Maintenance, and Recoverability
	SMR
	5 or 6

	<fscm>
	Cage Code
	CAGEC
	5

	<stock>
	National Stock Number
	NSN
	16

	<qty>
	Quantity of part on that specific figure
	Quantity
	5

** The tags that are not bold are traditionally used but not required.

Optional Tags

The following tags are optional tags that can be used in building a RPSTL.

	Tag Char
	Description
	Field Name
	Max #

	<um>
	Unit of Measurement
	U/M
	2

	<ui>
	Unit of Issue
	U/I
	4

	<unitprice>
	Price per unit
	Unit Price
	11

	<manrep>
	Mandatory Replaceable
	Man Repl

(This field can only contain an upper-case X to be activated)
	1

	<ecorep>
	Economically Replaceable
	Eco Repl

(This field can only contain an upper-case X to be activated)
	1

RPSTL - Step by Step
1. File Menu\Create\Update RPSTL.
This option will allow the path information to be set for the RPSTL database files. Information entered during this step is being written to two files: author.ini and tm_info.ini. **These files must be stored in IADS\RPSTL directory and not tampered with. Any modifications should be done through RPSTL Author File Menu\Create\Update RPSTL.
Author.ini file
The author.ini file is needed to author in RPSTL Author. This file lists the “Source Paths” for each RPSTL on the current computer.

TM_Info.ini file
The tm_info.ini file is very important in viewing RPSTLs in the RPSTL Reader. This file lists the “Destination Paths” for each RPSTL on the current computer. It also lists each RPSTLs data paths and graphic paths. If this file does not exist or is deleted, RPSTLs will not open. **Remember this file must be stored in IADS\RPSTL directory AND not tampered with.
Example of a TM_INFO.ini file.

	[tm_name]

RPSTL_Demo=demorpst

[tm_data_path]

RPSTL_Demo=\iads\demo\rpstl

[tm_picture_path]

RPSTL_Demo=\iads\demo\rpstl\graphics

[tm_desc]

RPSTL_Demo=IADS RPSTL Demonstration

2. File Menu\Test RPSTL.
Run the test functions to check your input files. Particularly, run the test: “Check the data fields in the Section 2 tag file for completeness.” This will make sure that all the fields in the sec2.tag file are complete.
3. File Menu\Build RPSTL Part Database.
This option will build the database files for the RPSTL. The Build RPST Part Database should default with the check boxes checked and the sec2.tag selected as the default file.
4. Tools menu\FigSheet Utility.
This is used to define the figures and sheets that make up the RPSTL and associate them with their graphic files. This can only be done if the graphic naming convention. ** Otherwise, this will have to be done manually through File\Edit Graphic Figure Sheets. See Naming Convention for RPSTL Graphics.
5. File Menu\Edit Graphic Sheet Items.
This is used to assign individual items on each figure that were created in the Figure Sheet Editor dialog.
6. File Menu\Test RPSTL.
Run the test functions to check your input files again. Particularly, run the test: “List the Section 2 Items not found in the Sheet Item database” and “List the Sheet Items not found in the Section 2 tag file. This will make sure that all items listed in the sec2.tag file are also listed in the sheet item database.
Naming Convention for RPSTL graphics

Graphics when named are not always named for what figure the graphic represents. There are two ways to associate figures sheets with the appropriate graphic, through the Graphic Figure Sheets editor or the FigSheet Utility.

FigSheet Utility

The Fig/Sheet tool allows for a naming convention to be done on graphics, which automatically associates graphics with figure and sheet. This will eliminate selecting the graphic and associating it with the appropriate figure and sheet “manually”. In other words, this process will save a lot of time.
· Click Tools menu\FigSheet Utility.

· Select RPSTL from the drop down menu.

· Click the “Start” button.

Figure Sheet Tool

	[image: image23.png]

· Click the “Cancel” button (even though there is a ‘cancel’ button the utility has been ran, save is only for errors).

· Click the “Exit” button.

File\Edit Graphic Figure Sheets
If graphics are not names according to the FigSheet Utility guideline, they must be done through the Edit Graphic Figure Sheets editor. This may take a little longer. Instead of the figure and sheets being associated based on the graphic name, this will have to be done manually.

· Click File\Edit Graphic Figure Sheets.
· Select the RPSTL from the RPSTL dropdown list (if not already active).
· In the “Figure” text box, type the Graphic Figure number.
· In the “Sheet Name” text box, type the Graphic Sheet number.
· In the “Last Sheet” text box, type the last Sheet number

· In the Available Graphics box, select the graphic associated with the information entered in the above boxes.
· Click the “Add/Modify Sheet” button to save the selections.
· Repeat steps 2 – 6 to associate each graphic with its correct figure and sheet.
RPSTL Hotspot Utility (Additional Step(s))

After creating a basic RPSTL, the RPSTL Hotspot Utility can be used to create a .PIC with hotspots linked to the associated graphic with the RPSTL information.
· Click Tools menu\RPSTL Hotspot Utility.
· Select RPSTL from the Select RPSTL area.
· Click Generate Hotspot button.

· Click the “OK” button on the Hotspot Generation Status screen. (The Save Output button is only for errors.)
· From RPSTL Author, click Tools menu\ZoomView Author to access ZoomView Author to verify the hotspots were created.

· Click File menu\Open and browse for .pic file that was just generated. Hotspot are generated with the .pic file, but not located in the appropriate location on the graphic. The hotspot will have to be moved to the correct location.

Move Hotspot in ZoomView
Move hotspots without Enable Hotspot Editor.

· Place mouse over hotspot so that it changes to a hand. In the status bar at the bottom of the screen it will indicate which item the hotspot pertains to by the ID.

· Hold down the Shift key and left mouse click. Mouse will now be a cross hair bow.

· Move hotspot to location and left mouse click to anchor hotspot

Resize Hotspots in ZoomView
Resize hotspots without Enable Hotspot Editor.

· Place mouse over hotspot so that it changes to a hand. In the status bar at the bottom of the screen it will indicate which item the hotspot pertains to by the ID.

· Hold down Ctrl key and left mouse click. Mouse will now be a diagonal arrow.

· Resize moving from the lower left corner of the hotspot box to the upper left corner.

· Left mouse to stop and save new size of hotspot.

Copy Hotspot Action

Copy hotspots without Enable Hotspot Editor.

· Hover over hotspot without enabling hotspot editor. Mouse will turn to a hand.

· To Copy the action: Click “Ctrl” and “C”. This is done while the mouse is still a hand.

· Left mouse click in the area that the action will be pasted. This will give ZoomView a “general” idea of where to paste the hotspot.
· To Paste the action copied: Click “Ctrl” and “V”. The hotspot may not be placed exactly where it was intended. You may have to search for it but it should be in the “general” area.
RPSTL Extras

The Customized menu allows extra features and functionalities to be added to the RPSTL.
Test RPSTL
** All tests should be run before Tools menu\RPSTL Hotspot Utility.
· Check data fields in section 2 tag file for completeness
This report lists two kinds of problems in the data or tagging structure of the Section 2 Data Tag file. WARNINGS are inconsistencies that might cause problems and ERRORS are incorrect data.
· List the Section 2 tag items not found in the Sheet Item database

The Figure Items listed below are items defined in the Section 2 Item database that could not be found in the Sheet Item database.

· List the Sheet Items not found in the Sec2.tag file.

The Figure Items listed below are items defined in the Sheet Item database that could not be found in the Section 2 Item database.
Set RPSTL front matter

Tech Manual information like: the Cover page, Table of Contents file and Section 1 Front matter can be added to the RPSTL. These files are tagged files that are done within IADS Author.

· Click Customized menu\Set RPSTL Front Matter.

· Click the “Use Custom” radio button for Front Matter to add to RPSTL.

· In the text box type in the path for the location of the files.

· Click the “OK” button.

· From RPSTL Author, click Tools menu\RPSTL Reader to access RPSTL Reader.
· Click File\RPSTL Front Matter to view the added RPSTL information.
Set Data Element Order

The element data order in the Item Entry section can be reorganized. Figure and item must always appear first, the remaining order of information does not matter.

· Click Customized menu\Set Data Element Order.
· Highlight the data element to move in the “Data Elements In Display Order” area.
· Click the “Move Up” or “Move Down” button to move the element in the direction desired.

· Click the “OK” button.

· From RPSTL Author, click Tools menu\RPSTL Reader to access the information added or change in the RPSTL Reader.
Set Data Element Action
A specific action command can be associated with a particular data element. The user can click on the item entry section in the RPSTL Reader to execute this action. This is mainly used to communicate with an external program for ordering parts.
· Click Customized menu\Set Set Data Element Action.
· Highlight the data element to add an action in the “Data element” area.

· In the “Action Command” text box type in the path for the external program to be executed.

· Adding <@> before the path for external program, the value of the elements from within the RPSTL will be extracted and inserted in the external program.
· From RPSTL Author, click Tools menu\RPSTL Reader to access to access RPSTL Reader.

· Click File menu\Search to search on a portion of the RPSTL selected.
· Double click on the date element in the item entry section that the action command was applied to. The external program or action should activate.

Define Export Type

An export type for the RPSTL can be created and used in the Export Part Information dialog of RPSTL Reader. The purpose of the export capability is to provide a broad range of part data to programs and processes outside of the RPSTL program and IADS.
· Click Customized menu\Define Export Type.
· In the text box under “Export type description”, type in the name of the new export type.
· In the text box under “Export type command”, type in the path for the external program of where is resides or how it can be executed.

· Click the “Add/Update button and the type will be added to the “Custom Export Types:” box above.

· By added <@> the value of the elements from within the RPSTL will be extracted and inserted in the external program.
· From RPSTL Author, click Tools menu\RPSTL Reader to access the information added or change in the RPSTL Reader.

· Click Export menu\Export List.

· Click the drop down menu to the right of “Under Export Type” to view the export type added.

Changes made to an existing RPSTL
Once a RPSTL is already built, the RPSTL may need to be updated.

Sec2.tag file changes

“Simple” changes made to the section 2 information can be made easily in the RPSTL program. If it’s a simple numeric change to the RPSTL the following steps can be done to update the RPSTL information. ** If more changes are needed to the RPSTL information, please call Team IADS for assistance.
· Make changes to sec2.tag file in text editor and save.

· Open RPSTL Author from the program group.

· Click File menu\Build RPSTL Part Database.

· Click the “Build RPSTL” button to update the database files with the information in the sec2.tag file.

· Click Tools menu\RPSTL Reader to do a search and view the changes in the RPSTL.

Dynamic Data for RPSTL (Optional)
Dynamic data is a way for extra information to be added into a RPSTL in addition to the standard Section 2 information. Example: an end user may need to find a part number; there may be a specific place that the part can be ordered. This addition information pertaining to the part number can be added into the RPSTL. Two addition files should be created when creating dynamic data: the dyn.ini and the dyn.tag. ** These files must be located in the same directory as the RPSTL source path.

dyn.ini File

The dyn.ini file contains a listing of the dynamic fields, with their field titles. These dynamic titles will display in the Item information section of the RPSTL screen after the standard information. There are ten addition fields available, but not all ten fields have to be used. There is a maximum of 25 characters for each of the 10 fields. The information entered into these fields will be displayed information regarding the selected item.
Example of field headings

	 [dyntitles]

	dyn1=Alternate Part No

	dyn2=Company

	dyn3=POC

	dyn4=Address

	dyn5=City, State & Zip

	dyn6= Phone Number

Dyn.tag File

A dyn.tag file must be created in addition to the dyn.ini file. The information that is typed into this file will be associated with the dyn.ini field names. The dyn.tag file contains the tagged information in a plain ASCII text file and associates the information with a specific <fig> and <item>.

Example of information in a dyn.tag file

	<fig>1<item>1<dyn1>12345<dyn2>AutoZone<dyn3>Al Oswald<dyn4>123 Way Lane

<dyn5>Huntsville, AL 35811<dyn6>256-955-5555

Steps to create a dyn.ini file

· Click File menu\Build RPSTL Part database.

· Select the correct RPSTL.

· Under the Dynamic Data section, click the “Load Data from File” checkbox and click the “Set Field Headings button”.

· Type the headings to appear in the RPSTL reader in each field that is needed. ** Remember that not all 10 fields have to be used.

Steps to create a dyn.tag file

· Open a plain ACII text file.

· Type the <fig> and <item> tags that the dynamic information will be associated with, then type in the dyn tags with the information that corresponds with the <fig> and <item> tags.

· Save file as dyn.tag. **Remember that this file must be stored in the same directory as the sec2.tag file.
· In RPSTL authoring click File menu\Build RPSTL Part database.

· Make sure the “Load data from file” box is checked and that the Field Headings (dyn.ini file) are set

· Click the “Build RPSTL” button.

· Click Tools menu\RPSTL Reader to search, select the appropriate information that was associated with the dyn.tag file and view the changes in the RPSTL.
Reference Designator for RPSTL (Optional)
The author also has the option to add a Reference Designator to the RPSTL. The Reference Designator file must be a plain ASCII text file with a .txt extension. By default, IADS names the Reference Designator file refdes.txt. This file must be located in the same directory as the RPSTL data files.

Refdes.txt File

The following format should be used for the refdes.txt file. For each reference designator a new line in the file is begun. The Reference Designator is followed by a space, then the associated Figure Number, followed by a space, and then the Item Callout Number.

	Reference Designator
(space)
Figure
(space)
Item

· The Reference Designator can be accessed through RPSTL Author Tools Menu\Build RPSTL Database. Make sure the "Load Data from File" box is checked under the Reference Designator section and click the Build RPSTL

WEBSITE REFERENCES

http://whatis.techtarget.com
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=17505
http://www.w3.org/TR/NOTE-sgml-xml
http://navysgml.dt.navy.mil/28001/xml.html

DTD CHEAT SHEET

Definitions

Tag Requirements

--

Must have an open and close tag

-O

Must have an open tag but a close tag is not required

-O EMPTY
Must have an open tag but cannot have a closed tag

Connectors

(, & |) The ORDER in which the elements must appear.

Occurrence Indicators

(? + *) How OFTEN an element may appear.

Symbols

(
GRPO (group open)

,
Sequence connector, all must appear in that order

&
And connector, both must appear in any order

|
Or connector, either can appear but not both

*
0 or more (optional and repeatable)

?
0 or 1 (optional)

+ (to the right)
1 or more (required and repeatable)

+ (to the left)
Inclusion at that level

-
Exclusion at that level

)
GRPC (group close)

Everything inside the comment is ignored by the parser and does not appear on the screen.

PAGE
54 of 55

_1105523323.ppt

<title>SGML Training Notes</title>

Open Tag

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

Open caret

Close caret

ELEMENT

<title id=“notes”>SGML training notes</title>

Open caret

Open Tag with ATTRIBUTE

Close caret

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

ELEMENT

ATTRIBUTE

Attribute value

_1105523365.ppt

<title>SGML Training Notes</title>

Open Tag

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

Open caret

Close caret

ELEMENT

<title id=“notes”>SGML training notes</title>

Open caret

Open Tag with ATTRIBUTE

Close caret

Text displayed on screen

Open caret

Close caret

Close Tag

ELEMENT

ELEMENT

ATTRIBUTE

Attribute value

