ADVANCED TRAINING

March 2004
[image: image1.png]
Customer Driven Solutions for Interactive Documents

Team IADS Technical Support

Email: iads@redstone.army.mil

Phone: (256) 876-IADS

DSN: (256) 746-IADS

Fax #: (256) 842-6546

DSN fax: (256) 788-6546

Mailing Address

Commander: US Army AMCOM

AMSAM-MMC-MA-NP

Sparkman Center, Building 5301, Room 1128

Redstone Arsenal, Alabama 35898

Website

https://iads.redstone.army.mil

Table of Contents
1ADVANCED TRAINING

2Table of Contents

3SYLLABUS FOR IADS ADVANCED AUTHORING COURSE

8ZOOMVIEW ADVANCED FEATURES

11HOTSPOTS

12Web References

13Push/Popstack Hotspots

15Tag Mapping

16Using "other" tags as Hotspot tags

17Entities

18AUTO NUMBERING

20Advanced CALS Tables

22QUERY BOXES (User Input) AND VARIABLES

24Conditional Branching

26Multiple Level Nesting

27IADS Tables

29Input Forms

33TOCLIP.EXE

34IADS AND DIGITAL MULTIMETER

36IADS.INI OPTIONS

38IADS CONFIGURATION/WIN.INI OPTIONS

40EXTERNAL PROGRAMS (PARAMETER ADMIN/REPLACE.INI)

42IADS INSTALL TOPICS

44Install Program Group Options

45IQUEST AUTHOR/READER AND ITS USABILITY

50REFERENCES

SYLLABUS FOR IADS ADVANCED AUTHORING COURSE

Day One

· Review of Basic Course

· Zoomview Advanced Features

· Multiple Action Hotspots

· Web References

· Push/Popstack Hotspots

· Processing Instructions

· Tag Mapping

· Using Other Tags as Hotspots

· Entities

· Autonumbering

· HR Tag

· Advanced Cals Tables

Day Two

· Query Boxes and Variables

· Conditional Branching

· Nested Ifs

· IADS Tables

· Input Forms

· Calculations

· Data Filtering

· TOClip

Day Three

· IADS and the Digital Multimeter

· IADS.INI

· IADS Configuration and win.ini

· Install Topics

· Install Program Group Options
IQUEST

REVIEW OF BASIC COURSE

1. What does the IADS acronym stand for?

2. What are the two default file extensions IADS recognizes when opening a document?

3. What is the easiest method for navigating BACK through the history list? and FORWARD?

4. What is the easiest method for navigating to the first frame within a file? and last frame?

5. What are IADS default logins? Can additonal logins be created by an author? A user? If so, how?

6. What is the purpose for having a login?

7. What two ways can the default document be changed for logins?

8. How many entries does the MRU list hold?

9. In what format does IADS require documents to be saved?

10. By default, What is the first SGML tag that must be inside an IADS document?

11. When a tag has an attribute, what is the syntax if typing it into the system editor?

12. TRUE or FALSE? IADS requires that all documents adhere to a specificed DTD?

13. TRUE or FALSE? If an author is required to use a DTD that does not contain the <file> tag, they should put the tag in there anyway and not parse just to satisfy IADS requirements?

14. IF the DTD does not have a <file> tag, what is needed at the top of each document to allow IADS to open the document?

15. What is the syntax of a DOCTYPE statement?

16. What file is needed to help IADS look for a specific DTD?

17. What is added to the DOCTYPE statement to tell IADS to look for a CATALOG file?

18. Where is the PUBLIC identifier usually found?

19. What steps will IADS go through to look for the main CATALOG file?

20. According to SGML rules and the NSGMLS parser, is it acceptable to have the DOCTYPE statment in both the document and DTD?

21. TRUE or FALSE? The main catalog file should be kept in a directory with all of the supporting files listed from within the catalog file, all entity files, and the DTD file(s).

22. The NSGML parser does not know where to look for the main CATALOG file if it is not located in the same folder as the .sgm file. What must be done to direct the NSGML parser to the main CATALOG FILE?
23. What is the name given to an SGML document and all the resources called from within the document? What might some of those resources be?
24. When using the NSGMLS parser on a file containing a DOCTYPE statement with a pulbic identifier, are you required to tell the NSGML parser which DTD is being used?
25. What IADS processing instruction is used to break up data into different screens?
26. What differentiates tags from processing instructions?
27. What IADS tags can be either tags OR processing instructions?
28. TRUE or FALSE: All documents that are to be displayed within IADS must be authored within IADS?

29. What is the WYSIWYG method of tagging a document with IADS called?

30. What is the name of the graphics program that comes with the IADS Suite?

31. What graphic formats does Zoomview accept?

32. Does Zoomview have graphic editing capabilies?

33. When linking from IADS to Zoomview, what is the default setting for the ZV window within the user's screen? Default setting for the graphic within that window?

34. Is there a way to place hotspots "on" a graphic? If so, how?

35. What are some of the actions that can be performed from within a hotspot?

36. What type of path is recommended when specifying a path? What is the syntax?

37. When marking data with change bars what is the SGML syntax?

38. Which setting takes precedence in a frame? File Properties or Frame Properties?

39. What is the name of the program used for verifying links from within sgm/ide and pic files? How many files can be verified at a time?

40. If a user is to be able to search across multiple files in an IETM then what must be done?

41. When doing a search from within IADS, what type of search operation is being performed?

42. After making a change to a file in the system editor what action is necessary before changes can be viewed in IADS? Is this same action necessary when making a change in Edit Mode?

43. What items must you have before beginning to build a RPSTL database?

44. What is the graphic naming convention if the author wants to utilize the FigSheet Utility for assigning figure numbers and sheet numbers to digital graphic names?

45. What is the name given to the "extra" fields that can be defined that may be specific to your RPSTL application? How many extra fields are allowed within the RPSTL application?

46. What is the name and location of the file that lists all the RPSTLs that are to be accessed on a single computer and RPSTL path information?

47. What would happen if an author failed to include this file with their installation CD and install it to the proper location?

ZOOMVIEW ADVANCED FEATURES

By default, a hotspot that displays an image automatically launches the ZoomView application in full-screen size with the entire graphic sized to fill the Zoomview window. ZoomView allows special parameters when launching ZoomView from a hotspot.

How to Get to the Parameters Tab

1. Go to the Authoring Menu and Select Edit Mode

2. Highlight the text that will become the hotspot

3. Right click and choose Define Hotspot

4. In the hotspot dialog box, choose display image from the action types drop down menu

5. Browse to find the image that will be displayed

6. Click on the parameters tab

	[image: image2.png]

The initial window size section controls how large the zoomview window is when it opens up in reaction to the hotspot being clicked. The left and top offsets always begin from the upper-left corner of the screen. Numbers between 0 and 100 can be entered into the offset, height, and width boxes. If an impossible combination of numbers is entered, IADS will use the default settings.

Customizing the Initial Window Size

1. Set the left offset to how far over the zoomview window should start from the top left corner. Numbers between 0-100 should be used. Ex: Half way would be 50.

2. Set the top Offset to how far down the zoomview window should start from the top left corner. Numbers between 0-100 should be used. Ex: One quarter of the way down would be 25.

3. Set the width of window to how wide the zoomview window should be on the screen

4. Set the height of window to how tall the zoomview window should be on the screen

Initial Window size

	The screen is split into four sections.

	
	

	To display the graphic on the left half of the screen with the full height set the Left and Top offsets at 0 and the Width of Window at 50 and Height of Window at 100.

	To display the graphic on the top half of the screen with the full width set the set the Left and Top Offsets at 0 and the Width of Window at 100 and Height of Window at 50.

	
	

	To display the graphic on the right half of the screen with the full height set the Left Offset at 50 and Top offset at 0 and the Width of Window at 50 and Height of Window at 100.

	To display the graphic on the bottom half of the screen with the full width set the set the Left Offset at 0 and Top offsets at 50 and the Width of Window at 100 and Height of Window at 50.

	
	

	To display the graphic on the upper left quarter of the screen set the Left and Top offsets at 0 and the Width of Window and the Height of Window at 50.

	To display the graphic on the upper right quarter of the screen set the Left at 50 and Top offset at 0 and the Width of Window and the Height of Window at 50.

	
	

	To display the graphic on the upper right quarter of the screen set the Left at 0 and Top offset at 50 and the Width of Window and the Height of Window at 50.

	To display the graphic on the upper right quarter of the screen set the Left and the Top offsets at 50 and the Width of Window and the Height of Window at 50.

The initial view section controls which portion of the graphic is displayed in the zoomview window. Under standard initial views there are six preset choices. You can display the entire image, any of the four quarters of the image, or the center portion of the image.

Setting the Standard Initial View

· Check the radio button for the appropriate portion that will be displayed

· The examples below show which portion of the graphic will show when a particular option is selected.

	Entire Image

[image: image3.png]
	Upper Left Quadrant

[image: image4.png]
	Lower Left Quadrant

[image: image5.png]

	Upper Right Quadrant

[image: image6.png]
	Lower Right Quadrant

[image: image7.png]
	Center Quadrant

[image: image8.png]

Using the Custom (as screen percentages) Option

This feature works similarly to the initial window size offsets, but instead of customizing the window size it customizes which portion of the graphic is showing. This option is best used when one of the standard initial views will not display the desired area of the graphic. To use this feature simply fill in the boxes in the same manner you would for the initial window size portion.
Using the Highlight Named Region Option

This feature can be used if the hotspot will be displaying a .pic file that has regions defined. Simply choosing one of the region ids in the drop down box will highlight that region. If you check the start zoomed on named region check box, the selected region will be enlarged and centered on the screen
HOTSPOTS

Mulitple action Hotspots
Hotspots within IADS can perform multiple functions. One thing to take into consideration when doing multiple action hotspots is the order in which that the actions take place. Order will matter because certain actions could be bypassed if they are not performed in the proper order.
The example below shows a hotspot performing three different functions. The first action is assigning a variable, the second action is displaying a message, and the third action is going to a frame in a different file. The order of these three actions is such that all three will execute.

	<hotspot>Advanced <action>

<?assign variable=”IADS”>

<?display message="How is Advanced Training so far?"?>

<?display text=".\Chapter2.sgm!2-3"?>

</action></HOTSPOT>

The next example shows the same hotspot performing the same functions but the order is different. The last action will not execute because the current file with it’s actions is loaded into memory when the action jumps to another file, those actions are loaded into memory and the last action from the current file will not be seen.

	<hotspot>Advanced <action>

<?assign variable=”IADS”>

<?display text=".\Chapter2.sgm!2-3"?>

<?display message="How is Advanced Training so far?"?>

</action></HOTSPOT>

Creating a Multiple Action Hotspot

1. Go to Authoring Menu and select Edit Mode

2. Highlight the text that will become a hotspot

3. Right click and select define hotspot

4. Select the first action type from the drop down box

5. Fill in the appropriate options for that action

6. Click OK

7. Select the second action type from the drop down box

8. Fill in the appropriate options for that action

9. Click OK

10. Repeat until all desired actions have been selected

Old vs New hotspots

Hotspots within IADS were created by using a <hotspot> and <action> tag in conjunction with a processing instruction. Now hotspot “actions” can be contained through attributes of an open <hotspot> tag.

Example of a hotspot tag with attributes

	<hotspot linktype=’message’ href=”How is Advanced Training so far?”>Training</hotspot>

Example of a hotspot tag with an <action> tag and processing instruction

	<hotspot>Training<action><?display message=”How is Advanced Training so far?”?></action></hotspot>

The action tag method of hotspotting is not obsolete. It is the required method when creating multiple action hotspots. To avoid confusion, create hotspots within IADS Author whenever possible so that they will be properly inserted into the SGML file by the application.

Web References

IADS allows you to create a hotspot that links to the World Wide Web. This type of hotspot can only be created in the system editor. Two attributes are needed on the hotspot processing instruction to make this type of hotspot operative:

1. linktype=”web”

2. href=”http://www.fullurl.exe” You must type in the full URL in order for the link to work
Example:

<?hotspot linktype=”web” href=”http://www.google.com”?>Google<?/hotspot?>

How To Create a Web Reference Hotspot

1. Go to the Authoring Menu and select System Editor

2. In front of the text that will become a hotspot insert the following processing instruction:
<?hotspot linktype=”web” href=”full url of website”?>

3. After the hotspot text type the following:
<?/hotspot?>

4. Save the file and close the system editor

5. Return to IADS

6. Got to the Authoring Menu and select Reload

Push/Popstack Hotspots

Sometimes the same procedure is referenced from several different places within an IETM. When a user clicks a link to go back, they want to go back to the frame that directed them to the procedure, but that frame could be different on different occasions. The solution to this problem is the push/popstack hotspot feature. When a link that has the push=”1” attribute is clicked IADS remembers that location. At the end of the procedure, a popstack link would be created that would send the user to the last push=”1”. If no push=”1” has been clicked, a popup hotspot would appear informing the user that the linkstack is empty and no other action will take place.

How to Create a Push Hotspot

1. Go to the Authoring Menu and select Edit Mode

2. Highlight the text that will become a hotspot

3. Right click and choose define hotspot

4. From the Action Types drop down list select Go to IDREF

5. Select the appropriate destination

6. Check the box at the bottom of the screen that says “On activation, push the launch point onto the linkstack”

7. Click OK twice

How to Create a Popstack Hotspot

1. Go to the Authoring Menu and select Edit Mode

2. Highlight the text that will become a hotspot

3. Right click and choose define hotspot

4. From the Action Types drop down list select Pop link stack

5. Click OK

The following page is a more in depth diagram of how the Push/Popstack hotspots work.

[image: image9.wmf]Chapter1.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’

push=‘1’?>

Procedure 1

<?/hotspot?>

Chapter2.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’

push=‘1’?>

Procedure 1

<?/hotspot?>

Chapter3.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’

push=‘1’?>

Procedure 1

<?/hotspot?>

Chapter4.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’

push=‘1’?>

Procedure 1

<?/hotspot?>

Each Chapter?.sgm below

references Procedure 1

Procedure1.sgm, Frame 1

Procedure1.sgm, Frame 2

<?hotspot href=‘Procedure2.sgm!Frame 1’

push=‘1’?>

Procedure 2

<?/hotspot?>

Procedure1.sgm, Frame 3

Procedure1.sgm, Frame 4

<?hotspot linktype=‘popstack”?>

Go Back

<?/hotspot?>

Procedure2.sgm, Frame 3

<?hotspot linktype=‘popstack”?>

Go Back

<?/hotspot?>

Procedure2.sgm, Frame 1

Procedure2.sgm, Frame 2

Procedure1.sgm with 4 frames

Procedure2.sgm with 3 frames

Legend

Bold text: Hotspot

Box: A frame within a file

Underlined text: File and frame reference

Dashed arrow: Clicking Go Back hotspot process

Solid arrow: Clicking Next process

Dotted arrow: Clicking a Procedure hotspot

process

Start

Here

Tag Mapping

IADS performs specific functions on reserved tags and their corresponding attributes. For example, <graphic boardno=”.\graphics\logo.jpg”> will display a graphic. A project may require that a DTD is used that does not include a graphic tag, but it may have a tag that serves the same intended purpose. The TagMap processing instruction will reassign a tag to perform the function of a reserved tag. This processing instruction must be placed before the top-level tag in the document. This function cannot be used on processing instructions.

	<!DOCTYPE iadsdoc [

]>

<?TagMap figure=”graphic” src=”boardno”?>

<iadsdoc>

<?frame id="Frame 1"?>

<title>Example of Tag Mapping</title>

<figure src=”./graphic/iads.cal”>

<para>The above tag is an example of how tag mapping works.</para>

</iadsdoc>

How to Create a Tagmap

1. Go above the top level tag in the sgm/ide file

2. Type the following:
<?TagMap A=”B” X=”Y”?>

· Where A represents the tag from the DTD being used and B represents the IADS reserved tag that A should behave like

· X represents an attribute of tag A that should behave like attribute Y of IADS reserved tag B

Using "other" tags as Hotspot tags

Tagmaps will not work when trying to get other tags to behave like the hotspot tag. This hurdle can be overcome through the stylesheet.

Giving Other Tags Hotspotting Capabilities

1. Go to the Authoring Menu and select StyleEditor

2. Add the tag that will serve as the hotspot tag to the stylesheet

3. Click the “Use as hotspot tag” check box

	[image: image10.png]

4. Click the browse button to the right of the checkbox. When the browse button is clicked, the following box appears:

	
[image: image11.png]

5. Type in the attribute that will serve as the href attribute. This attribute will tell the hotspot where to go when clicked

6. Click OK

7. Make sure that the Begin New Line box is unchecked. When the tag is used within the document it will now function as a HOTSPOT tag.

To display the value of one of the tag’s attributes, enter the attribute within <> into the Attribute List to Display section. Attributes entered into the “on start tag” box will display right before the tag’s contents.

	
[image: image12.png]

Entities

In order to understand entities, one must get comfortable with the idea of substitution. Everyone has some experience with substitution. For example, if someone is cooking brownies they may need to substitute an ingredient. If they looked at the substitution chart they may see that they can substitute 3 tablespoons of cocoa for one unsweetened square of baker’s chocolate. In other words the square of chocolate and the cocoa function the same or are equal in the brownie recipe. The cook can substitute cocoa for baker’s chocolate.
The same ideas are portrayed in math. For example, (x + 2)(x + 4) is the same as x2 +6x +8. Either one of these equations is the same. In everyday conversation substitutions are made. If someone tells you they live in the USA, you know that they live in the United States of America.

Entities are a method of substitution used in SGML. The entity is given a name and a value. Using the entity’s name is equal to or the same as using the entity’s value. When dealing with entities there are two types: general and parameter. When and how to create and reference each of these types of entities will be discussed in this section.
External and Internal Entities

When creating an entity (whether general or parameter), the author must decide if the entity is internal or external. An entity is internal if the substitution value can be obtained from within the DTD or document instance that the entity will be referenced within.

The basic syntax for declaring external entities is as follows:

<!ENTITY entity_name “entity value”>

and example would be:

<!ENTITY usa “United States of America”>

In this example anywhere the usa entity is referenced it would be substituted with United States of America. With internal entities, the text contained between the quotation marks is the exact text that will be substituted into the DTD or document instance.

External entities are used when the substitution string is found outside of the DTD or document instance in use. Specifically, external entities lead to other files. Instead of telling the entity exactly what to replace inside the quotation marks, the author tells the entity where to go get the data for substitution (the external file). This is done thru the use of identifiers. Identifiers are either SYSTEM or PUBLIC. Both types of identifiers direct the entity to a file but they use different methods. Public identifiers contain a reference to the main catalog, the entity looks for the entity value in the main catalog and the catalog gives the file path for that value. System identifiers contain the path directly to the destination file.
Once the destination file is reached, the contents of that file are substituted where the entity is declared. For example, if the entity leads to a file that contains tagged data, the tagged data would be inserted into the document where the entity was called out.
System and Public Identifiers

	<!ENTITY ISOpub PUBLIC "ISO 8879-1986//ENTITIES Publishing//EN">
<!ENTITY ISOamsa SYSTEM "ISOamsa.ent">

Once the author has determined whether the entity is internal or external, they must determine whether the entity is a general entity or a parameter entity.

General Entities
General entities are used when the entity will be referenced within the document instance. General entities are defined inside the square brackets that follow the doctype statement. The syntax of a general entity definition is as follows:

<!ENTITY entity_name “entity value”>

 General Entity Declaration
	<!DOCTYPE iadsdoc PUBLIC "-//iads//DTD iads//EN" [

<!ENTITY iads “Interactive Authoring and Display System”>

]>

General entities can be referenced inside of element content or as values of attributes. To utilize a general entity in the document, type an ampersand, the name of the entity, and follow it with a semicolon with no spaces in between. The example below shows how to reference the entity declared in the previous example as tag content and as an attribute value.

General Entity Referencing

	<iadsdoc>

<title>&iads;</title>

<para id=”&iads;”>This is an IETM Authoring System</para>
</iadsdoc>

Parameter Entities

Parameter entities can only be referenced from within the DTD. They serve the same purpose as general entities, but the declaration and referencing syntax differs slightly.

<!ENTITY % entity_name “entity value”>

Parameter Entity Declaration

	<!ENTITY % specpar “warning|caution|note”>

Parameter entities are referenced by entering a percent symbol, followed by the entity name, followed by a semicolon. There should be no spaces between the three.

Parameter Entity Referencing

	<!ELEMENT para –(#PCDATA|paratext|%specpar;)*>

AUTO NUMBERING

IADS can display outline style numbering without having to type the numbering into the system editor.

First, a processing instruction must first be added in before the text to be numbered. This processing instruction can be placed anywhere before the auto number will begin.

	<?autonum start="1" init="1"?>

To stop the auto numbering another processing instruction must be added after the text to be numbered.

	<?autonum stop="1"?>

Once the processing instructions have been inserted around the text, properties must be added to the stylesheet to get the numbering to display. Select the tag (or tags) that is within the auto numbering processing instructions in the StyleEditor. Click the Auto Number button from the buttons on the right. Select the style of auto numbering then click the depth for the style to begin. For example if you have a <subpara1> tag and a <subpara2>, the subpara1 would have an auto number style of “A, B, C” with a depth of 1 because it starts the top level of the outline. The subpara2 would have an auto number style of “1, 2, 3” and a depth of two since it would be beneath the top level of the outline.

	[image: image13.png]

How to Enable Autonumbering

1. Make sure the file is tagged so that it lends itself to an outline

2. Open the system editor and insert the following processing instruction below the first frame tag, but above where the autonumbering should start:
<?autonum start=”1” init=”1”?>

3. Immediatley below where the autonumbering should end type the following processing instruction
<?autonum stop=”1”?>

4. Save the file and close the system editor

5. Open the file in IADS

6. Go to the Authoring Menu and select Style Editor

7. Add the tag that needs autonumbering to the stylesheet, be sure to include the parent tag

8. After the tag has been added, click on the Autonumber button

9. Select a depth on the right (what level in the outline it will be, for example depths of two will appear below the closest tag with a depth of one)

10. Select the autonumber style on the left for the tag

11. Repeat for all tags that should appear in the outline

Note: If the autonumbering stop processing instruction is in the file, but autonumbering needs to pick up at a spot further along in the file, the autonumbering start processing instruction can be added with an init value of 2. This will make the autonumbering pick up where it last left off. Ex:

<?autonum start=”1” init=”2”?>

Advanced CALS Tables

There are several advanced capabilities that can be added to CALS tables to increase their functionality. This section will cover four advanced features: table width processing instructions, spanning, morerows, and column specification.

Table Width Processing Instructions

A processing instruction can be put before the opening table tag to specify the width of the table. The default measurement is pixels, but it can also be specified in inches or centimeters. When using this feature, the table’s width must be equal to or greater than the width of the columns. It is best to use relative column widths with these processing instructions.

Processing Instructions that Specifies Table Width

	<?pub tablewidth=”400”?> specifies width to 400 pixels

	<?pub tablewidth=”6i”?> specifies width to 6 inches

	<?pub tablewidth=”35cm”?> specifies width to 35 centimeters

IADS also allows the table width to be specified proportionally to the screen width so that the entire table is viewable, no matter how the user is viewing the IADS frame. To do this, enter the width as a percentage of the viewable screen width. The syntax for this is making the tablewidth a number between 0-100 followed by an asterisk or a percent sign. Tables that are proportionally sized must have columns that are proportionally sized. This is done by adding an asterisk to the value of the colwidth attribute in the colspec tag.

Processing Instructions that Specify Table Width to 50% of the Screen Size

	<?pub tablewidth=”50*”?>

or

<?pub tablewidth=”50%”?>

Spanning

Sometimes an entry may need to span across multiple columns. There are two methods available to accomplish this task in IADS. Both of these methods require that the columns be named using the colname attribute in the colspec tag. Once the columns are named, they can be called upon for several advanced features.

Below is an example of a table that utilizes spanning:

	Year

	2001

	2002

	Jan

	Dec

	Jan

	Dec

	

Spanspec

One of these methods is the spanspec feature. Spanspec allows you to create predefined spans based on the column names. The span definition must come after the colspec tags. The spanspec tag is an “empty” tag and doesn’t close. It has three required attributes: spanname, namest, and nameend. Spanname gives the span a label that can be used by the entries to reference the span. Namest tells IADS which column to begin the span in. Nameend tells IADS which column to end the span in.

How to Use Spanspec

1. Open the file in the system editor

2. Add the colname attribute to the colspec tags, give each column a unique, meaningful name

3. Below the colspec tags, add a spanspec tag

4. Add the spanname attribute to the spanspec tag. The value of this attribute is a unique name for the span.

5. Add the namest attribute to the spanspec tag. The value of this attribute should be the name of the column the span should start in.

6. Also add the nameend attribute to the spanspec tag. The value of this attribute should be the name of the column the span should end in.

7. Add a spanspec tag for every spanning scenario that will be utilized.

8. On entries that should use one of the spans, add the spanname attribute. The value of this attribute is the name of the span that you want to utilize.

Spanning Columns On The Fly

Columns can be spanned without using the spanspec feature. This comes in handy when it is uncertain when columns will need to be spanned. In order to span columns without using the spanspec attribute, the namest and nameend attribute can be used on the entry tag to tell the span where to start and where to end for that entry.

How to Span Columns on the Fly

1. Open the file in the system editor

2. Add the colname attribute to the colspec tags, give each column a unique, meaningful name

3. On entries that should span columns add the namest attribute (the value should be the name of the column the span should start in) and the nameend attribute (the value should be the name of the column the span should end in)

Morerows

To span columns vertically add the morerows attribute to the entry tag. The value of the morerows attribute is the number of additional rows that the entry will span. For example, if the next entry would be placed in row one but it needs to span rows one thru four, the morerows attribute would be added to the entry tag with a value of three. This attribute tells IADS to take up three rows in addition to the row the entry would normally take up.

How to Span Vertically

1. On entries that should span vertically, add the morerows attribute

2. Set the value of the more rows attribute to the number of additional rows that the entry should span

Specifying A Column

Labeling the columns with the colname attribute in the colspec tag also comes in handy when a column needs to be skipped. For each row the entry tags are placed sequentially in cells from left to right. Sometimes an entry will not go into the next sequential cell (in other words a cell needs to be skipped or left empty). By adding the colname attribute to the individual entry tag, IADS will place the entry in the specified column. This can eliminate empty entry tags.

How to Specify a Column

1. Open the file in the system editor

2. Add the colname attribute to the colspec tags, give each column a unique, meaningful name

3. When an entry does not need to be placed in the next sequential column, add the colname attribute to the entry tag with the value of the column that you want the entry placed in

QUERY BOXES (User Input) AND VARIABLES

Query Files/User Input

The use of query boxes is a means to get information from the user. They can be stored and later used for testing. The example below demonstrates the syntax for a query box.

<?query text="What is your favorite color?" result="favcolor" default="Blue"?>

The question that pops-up on the screen is What is your favorite color? There will be a box with a blinking cursor that will allow the user to input a response. The response will be written to IADS memory. To see how the information is stored go to Tool Menu/Show Entity Files. Based on the response given there will be an entry for the result of "favcolor" with the user’s response and the login that is associated with this. There is a minimum of one character to enter into the query box. The default attribute will pre-fill the box with a value.

	[image: image14.png]

Variables

In the example above, favcolor is a variable. The book definition of a variable is simply a placeholder. To relate this to an everyday example consider someone’s weight. One year they may weigh 100 pounds, the next year they may way 105 pounds. Even though the two weights are different it is still that person’s weight. Weight is the placeholder (or name given) to the number of pounds a person weighs. Height is a variable name given to how many feet and inches a person is tall. The balance of a person’s bank account fluctuates daily, but it is always called the balance (balance is just the name of the variable). In our example, favcolor is the name given to reference the user’s favorite color.

Displaying a variable’s value

Once a value is stored it can be recalled to display its value within IADS. It can be referenced in the same manner as an entity, or with a processing instruction. The syntax for displaying a variable within an IADS screen is:

Within text on a screen

	<para> Ryon’s favorite color is &favcolor;.</para>

or

<para>Ryon’s favorite color is <?display variable="favcolor"?>.</para>

Within a message box

	<?display variable="favcolor" message="y" title="Favorite Color" pretext="Ryon’s favorite color is" posttext=" . Hope you like this color, too."?>

Conditional Branching

Once a response it stored in IADS memory, it can be tested for certain values. The following is the syntax for testing values:

	<?if test="$favcolor eq blue"?>

Notice that the variable, expression operator, and test value are all within on set of quotes (may be single apostrophes). Also, the variable has a $ in front of it when used in an IF or ELSEIF test. Only put $ in front of variables when they are being tested.. If the test is TRUE then the next and all remaining statements after this IF test will be executed until an <?ENDIF> tag is encountered. In the following statement if the user entered blue (exactly) then a pop-up message would appear on the screen.

	<?display message="Ryon’s favorite color is blue, too"?>

<?endif?>

You can also test for alternative or another value(s), this is done by using the <?ELSEIF statement. The same syntax is used, but the keyword is ELSEIF is used. For every <?IF statement you can have numerous <?ELSEIF statements. Before starting another <?IF statement you must have an <?ENDIF>. The following statement will check to see if the value entered is "pink". IF the <?IF statement is not true then the <?ELSEIF statement should be true and all remaining statement(s) after the <?ELSEIF test will be executed until an <?ENDIF> is encountered. In the example shown below if the value of favcolor is equal to pink in memory then the message "Ryon doesn't care for pink." will appear.

	<?elseif test="$favcolor eq pink">

<?display message="Ryon doesn't care for pink.">

<?ENDIF>

Another alternative test that can be done is the <?ELSE> statement. This statement serves as a catch all. By placing this test statement, it is saying that if the <?IF statement is not true or any of the <?ELSEIF statements are not true then this action should be done.

	<?else?>

<?display message="Really, I like all colors."?>

<?ENDIF?>

IMPORTANT

1. For every <?IF statement you must have an <?ENDIF?> statement.

2. Make sure that IF, ELSEIF and ENDIF begin with a ?.

3. If you encounter an error message when authoring, check to see that a $ has been used in front of the variable when using the variable in an <?IF of <?ELSEIF statement.

4. Make sure to spell TEST correctly.

Operator Expressions

	Test Operator

	Acceptable Syntax

	Less than

	<

	lt

	Greater than

	>

	gt

	Equal to

	==

	eq

	Not equal to

	!=

	ne

	Less than or equal to

	<=

	le

	Greater than or equal to

	>=

	ge

	

Conditional Branching Exercise

	Size of Head in Inches
	< 7.25
	7.25 - 7.5
	7.51 - 7.75
	7.76 - 8
	8 - 8.25
	> 8.25

	Helmet Size
	XXS
	XS
	Small
	Medium
	Large
	XL

NESTED CONDITIONAL BRANCHING

<?IF> statements can stand-alone or be nested inside of one another.

Nested Conditional Branching Exercise

	Inspection Checklist

	1.
	Has the preflight inspection been performed?
	 FORMCHECKBOX
Yes FORMCHECKBOX
No

	
	If Yes go to line 2.
	

	
	If No go to line 5
	

	2.
	Has the inspection report been filed?
	 FORMCHECKBOX
Yes FORMCHECKBOX
No

	
	If Yes go to line 3.
	

	
	If No go to line 4.
	

	3.
	All go for flight. Checklist completed.
	

	4.
	Fill out form A-551. Checklist completed.
	

	5.
	Did the helmet have any visible cracks?
	 FORMCHECKBOX
Yes FORMCHECKBOX
No

	
	If yes go to line 6.
	

	
	If no go to line 7.
	

	6.
	Turn in the helmet to the supply Chief for replacement. Checklist completed.
	

	7.
	Retain the helmet for flight. Fill out form A-551. Checklist completed.
	

Multiple Level Nesting
There can be multiple levels of conditional branching. A common occurrence of this situation is when there is a troubleshooting flowchart. At each node at test is performed, the results of that test determine the actions the user should take. Below is a guideline to getting this type of flowchart started.

1. Get a numbering system down (No=0 and Yes=1)
2. Follow the numbering system down the flowchart path adding appropriate numbers for each yes or no answer.
3. Create a conditional branch that asks the user questions dependant upon their response to the previous question (the numbering system will serve as your variables).
Table 5-1. Troubleshooting Chart- Insufficient/No Air to User

IADS Tables

There are instances when certain tags in a DTD must be used for a particular section of information, but the information would best be displayed in a table format. In this situation a CALS table could not be used because they are dependant upon the use of CALS table tags. IADS can create a table based on any tags as long as the specifications are set up in the stylesheet. Look at the example code below:

<product>

<name>Super Tank</name>

<idnum>512</idnum>

<desc>This tank will destroy targets from 3000 miles away</desc>

</product>

This code describes a tank. It would look better if the information was lined up across the screen. There are some basic elements here that make this piece of code a great candidate for an IADS table:

1. The prescence of a “wrapper” tag.

2. Tags that wrap descriptive data that would line up well in columns.

A wrapper tag is a tag that opens a logical block of information. In the code example above the wrapper tag is product. Each individual item will be preceded by an opening product tag and ended by a closing product tag.

Each individual piece of data in the product example is placed within a set of tags. These pieces of data would line up nicely in a table, and each column would be split well by the tags within the wrapper tag.

How to Create an IADS Table

1. Open the tagged file in IADS

2. Go to the Authoring menu and select Ruler ON

3. Go to the Authoring menu and select Style Editor

4. Add the wrapper tag to the style sheet and click on the Table button. The following box will pop up:

	
[image: image15.png]

5. Check the box that says tag starts a row (this will notify IADS to move to the next row of the table every time it sees the wrapper tag. It will function similarly to the row tag in a CALS tables).

6. Click OK

7. Click the modify button on the style sheet if necessary

8. Add the first tag that will function as a column in the style sheet

9. Click the table button

10. Check the box that says tag starts a column

11. Enter the place on the ruler that you want the tag to start (for example at the zero inch mark or the one inch mark) in the column left side box

12. Enter how wide you want the column to be in the column width box

13. Click Ok

14. Click the modify button on the style sheet if necessary

15. Repeat steps 8 through 14 for every tag that will start a column

16. When every tag that will be in the table has been entered click done in the style sheet dialog box

The code example above could be entered into the style sheet so that it might look like this:

	
[image: image16.png]

Input Forms

Input forms are used to extract information from the user. There are five basic ways that input forms collect data: query boxes, select boxes, radio buttons, check boxes, text boxes, and submit buttons. IADS utilizes reserved tags to recognize form objects.

Within each frame the form tag must precede the form objects and close after all form objects for that frame. Also, each frame that contains form objects must also contain a submit button to save the user’s responses. All form objects store the data collected in a variable. The following section will discuss how to create each of these elements with the exception of query boxes which has already been covered.

Select Boxes

Select boxes limit the user’s response options and appear as drop down boxes on the screen. They can only select one option out of a list. In order to create a select box use the select tag. This tag must contain the name attribute. The value of the name attribute will be the variable that holds the user’s input.
The open select tag will be followed by several option tags. The content of these tags will appear in the drop down box on the user’s screen. Each option tag will have a value attribute. The value of this attribute is stored in the variable declared by the select tag.

Once all of the options have been defined the select tag should be closed. A sample of how to tag a select box and a sample of what will appear on the screen is demonstrated below:

Select Boxes
	<select name=”rank”>

<option value=”prv”>Private</option>

<option value=”sgt”>Sergeant</option>

<option value=”mjr”>Major</option>

</select>
	
[image: image17.png]

Radio Buttons

Radio buttons also limit the user’s response on the input form. Only one radio button can be selected at time.

To create radio buttons use the input tag. Three attributes must be included in order to have functioning buttons.

1. type –value must be radiobutton

2. name –value will be tested to see if true or false in the results

3. value –value for this attribute will display on the screen next to the radio button

An input tag must be entered for each radio button that will be displayed. The input tags do not close

Radio Buttons

	<input type=”radiobutton” name=”M” value=”Male”>

<input type=”radiobutton” name=”F” value=”Female”>
	
[image: image18.png]

Radio buttons can be tested to see if they are checked or not. If they are checked the value is one if they are not checked the value is zero. In the example above the M radio button is checked so it’s value is equal to one. The if test for the M radio button would look like this:

<?if test=”$M eq 1”>

Whatever followed this test would be executed because the test would be True.

Check Boxes

Check boxes allow the user to as many as they choose from a list of options. Check boxes also use the input tag, but the type attribute has a value of checkbox. The other attributes follow the same pattern as radio buttons. Check boxes are tested to see if they are checked or not in the same manner that radio buttons are.
Check Boxes

	<input type=”checkbox” name=”mag” value=”Magazine”>

<input type=”checkbox” name=”tv” value=”Television”>

<input type=”checkbox” name=”book” value=”Book”>
	
[image: image19.png]

Text Boxes

Text boxes are used for open ended questions. Users simply type their answer in the space provided on the screen. Text boxes are also created by using the input tag, but the attributes and their values are slightly different:

1. type – value of text

2. name – value is the name of the variable assigned to store the text boxes response

3. size – value must be numeric, this is how many characters wide the text box will display
4. maxlength – value must be numeric, this is how many characters the text box can accept
The example of a text box below also contains a para tag to inform the user what information is expected in the text box.

Text Boxes

	<para>What is your first name?</para>

<input type=”text” name=”fname” size=”15” maxlength=”15”>
	
[image: image20.png]

Submit Buttons

Any frame that contains form elements must also contain a submit button to store the user’s responses in the appropriate variable. The submit button also uses the input tag and it’s attributes are as follows:

1. type – value of submit

2. value – the value of this attribute will display on the button

3. linktype – this attribute tells IADS what to do when this button is clicked. Any linktypes that can be used on hotspots can be used here, just be sure to include the necessary attributes for that linktype (refer to page 24 of the Basic Training Manual). The most common linktype is “next”.

Submit Buttons

	<input type=”submit” value=”Next Screen” linktype=”next”>
	
[image: image21.png]

Displaying Form Results

Once a user has completed the form, the author may wish to display the results to the user. The variables that store the form responses can be used as any other variable can. The table below summarizes which attribute declares the variable as well as how to display it.
Form Objects Summary

	Form Object
	Variable Attribute
	Display Method

	Select box
	name attribute on select tag
	&nameattribute; value will be the value of the option the user chose

could also test to see which value they chose and manipulate display accordingly

	Radio buttons
	name attribute on input tag
	test to see if radio button was checked and display accordingly

	Check boxes
	name attribute on input tag
	test to see if box was checked and display accordingly

	Text boxes
	name attribute on input tag
	&nameattribute; the text the user typed into the text box will be displayed

Input Forms Lab
You have one hour to complete the following lab.

In this lab an interactive input form will be created and the results will be displayed. Any form object may be used that is suitable for the piece of data being retrieved. There are only two rules:

1. You must use at least one of each of the following:

a. Query Box

b. Select Box

c. Radio Button

d. Check Box

e. Text Box

2. There must be a submit button on every frame.

Here is the data you will be collecting from your end user:

1. Their rank and last name

2. Their supervisor’s last name

3. Their gender

4. The date of their last physical

5. Their helmet size

6. Whether they will need ANVIS, AH-1, or Night Vision Goggles

7. Have them mark equipment they have already received on a list

8. Have them select their top two choices in flight dates from a list of flight dates

You may use as many or as few frames as necessary to complete the lab, but you must out put the results to the screen.

Data Filtering

Data filtering is controlling what the end user sees based on certain actions that they take. This can be done through hotspots, variables, frame properties, or any other number of methods. The key to data filtering is being creative with the skills that you have in order to get the results you want. There is not set way to control display, no way is right or wrong if it works and doesn’t violate the rule of the DTD or IADS.
Calculations

IADS allows calculations to be executed within processing instructions and hotspots. These calculations can be performed with data that is entered into text boxes, query boxes, or any other variable that contains a numeric value. Calculations can be performed without a variable value also.

There are three methods to perform a calculation: calculation processing instruction, display expression processing instruction, and a calculation hotspot.

Calculation Processing instruction

The calculation processing instruction performs a calculation and stores the result in a variable. Additional tagging is required to display the results of the calculation processing instruction. The syntax of the processing instruction is as follows:

<?calc expr=”calculation formula” result=”variable name”?>

Example:

<?calc expr=”(grade1 + grade2)/2” result=”finalgrade”?>

Where: grade1 and grade2 are the value of variables already collected (possibly through

any method) and finalgrade is where the students grade average would be stored, final

grade could be displayed through any chosen means

Display Expression Processing Instruction

The display expression processing instruction also performs a calculation and stores the result in a variable. The key difference between the two processing instructions is that the display expression processing instruction gives the option to display the results in a message box. Since the result is stored in a variable it can be referenced again later if needed. The syntax of the typical occurrence of this processing instruction is below:

<?display expr=”calculation formula” decimals=”# of decimal places” result=”variable

name” message=”y” title=”message box title” pretext=”text to appear before result”

posttext=”text to appear after result”?>

Example:

<?display expr=”(grade1 + grade2)/2” decimals=”2” result=”finalgrade” message=”y”

title=”Final Grade” pretext=”Your final grade is ” posttext=”. Please record this for your

personal records”?>

Calculation Hotspot

The calculation hotspot also is very similar to the other two methods of calculating. It can use variables that have already been collected and the author must determine the result display method. The key difference between this calculation method and the other two is that this method does not perform the calculation until the hotspot is clicked and the others are calculated upon entering the frame. The syntax is as follows:

<?hotspot linktype=”calc” expr=”calculation formula” result=”variable name”?>

Example:

<?hotspot linktype=”calc” expr=”(grade1 + grade2)/2” result=”finalgrade”?>

 TOCLIP.EXE

IADS provides the capability to communicate with external programs through the clipboard feature. If the clipboard contains IADS:: in conjunction with a processing instruction the command that follows is sent directly to IADS. In the example below the .SGM file does not assign a value to the variable, it is done through the clipboard with the IADS:: command.

Command in clipboard

	IADS:: <?assign variable='hotdog' value='relish' repaint='true'>

	IADS Author/Reader variable display

[image: image22.emf]

	Example in .SGM file

<!DOCTYPE IADSDOC [

]>

<iadsdoc>

<?frame ID='FRAME_1'>

<para>The hotdog need lots of &hotdog;.</para>

</iadsdoc>

TOCLIP.exe with IF/ELSEIF tests

Once the command is made to the clipboard, an IF/ELSEIF test can be done based on the value of the variable.

Command in clipboard

	IADS:: <?assign variable='hotdog' value='onions' repaint='true'>

	IADS Author/Reader variable display

[image: image23.png]
	Example in .SGM file

<!DOCTYPE [

]>

<iadsdoc>

<?frame ID='FRAME_1'>

<?if test="$hotdog eq relish">

<para>The hotdog need lots of &hotdog;.</para>

<?elseif test="$hotdog eq onions">

<para>I like lots of &hotdog; on my chili dog.</para>

<?endif>

</iadsdoc>

IADS AND DIGITAL MULTIMETER

IADS utilizes IETM Class 5 functionality by supporting intrusive diagnostics. IADS requires the use of National Instruments Data Acquisition 4050 for PCMCIA (NI 4050) as the standard digital multimeter (DMM). IADS can interact with the hardware to receive voltage readings and resistance without requiring the user to enter data, therefore reducing the probability of human data entry error. IADS receives and stores readings from the DMM through SGML processing instructions. Once the reading is received it is stored into IADS memory. Listed below are the necessary steps required to utilize the DMM feature within IADS:

Obtain the National Instruments 4050 for PCMCIA (product information attached)

Install the necessary Software to set up the DMM Card

Author the following processing instructions in the .sgm/.ide file.

	<?measure type="INIT"> - Value MUST be capitalized

This DMM initializing processing instruction must be used at the beginning of each IADS session.

three different readings accepted by IADS:

Reads/Stores Volts Direct Current

	<?measure type="VDC"> - Value MUST be capitalized

Reads/Stores Volts Alternating Current

	<?measure type="VAC"> - Value MUST be capitalized

Reads/Stores Resistance

	<?measure type="OHM"> - Value MUST be capitalized

**When entering the frame where there are any of the above three statements, it

 is necessary to have the probes placed on the test subject.

Do a test on the value and execute an appropriate action.

DMM Resource

http://sine.ni.com/apps/we/nioc.vp?cid=1475&lang=US
	NI PCMCIA-4050
Portable 5 1/2-Digit Multimeter

[image: image24.png]

Larger Picture
· DC measurements -- 20 mV to 250 VDC; 20 mA to 10 A

· AC measurements -- 20 mVrms to 250 Vrms; 20 mArms to 10 Arms; True rms, 20 Hz to 25 kHz

· Resistance measurements -- 200 Ω to 2 MΩ

· 60 readings/s, maximum

· UL Listed

· Includes the P4-BJ2 Cable, P-1 Probe Set, NI-DMM driver, and DMM Soft Front Panel

Data Sheet and Specs (PDF)

[image: image26.png]

	Prices

	[image: image27.png]

	

	[image: image28.png]

	Overview
The National Instruments PCMCIA-4050 is a full-feature digital multimeter (DMM) for hand-held and notebook computers with a Type II PC Card (PCMCIA) slot. The NI PCMCIA-4050 makes accurate 5 1/2-digit measurements of DC voltage and current, true-rms AC voltage and current, and resistance (ohms). Its size, weight, and low-power consumption make it ideal for portable measurements and data logging with hand-held and notebook computers.
	[image: image29.png]
	Resources

[image: image30.png]
•

Product Demonstrations
•

Evaluation Software
•

Customer Solutions
•

Application Notes
•

Product Manuals
•

Related Products

 Measurement and Automation Software

IADS.INI OPTIONS

Just as each user account references an .ini file to get the user’s settings, IADS references an .ini file to get its default program settings. Below is the default iads.ini file that is created when IADS is installed.

; To "uncomment" an INI file line simply remove the semicolon from the

; beginning of the line.

; The ShowSysMenu entry in this section defines whether or not the IADS Reader

; and Author programs contain a system menu. By default, both programs have

; a system menu. Uncomment the "ShowSysMenu" line below if you do not want

; the IADS Reader and Author programs to contain a system menu.

;

; The ShowMaxMin entry in this section defines whether or not the IADS Reader

; and Author programs contain maximize and minimize window controls. By

; default, both programs have maximize and minimize controls. Uncomment the

; "ShowMaxMin" line below if you do not want the IADS Reader and Author

; programs to contain maximize and minimize controls.

;

; The ShowAllBookmarks entry in this section defines which bookmarks are

; available for a given user. By default, a user has access to all of

; his/her bookmarks, regardless of the file they apply to. Uncomment the

; "ShowAllBookmarks" line below to restrict bookmark availability to only

; those that apply to the current file.

;

; The DoSpecialCRProcessing entry in this section defines how IADS treats

; carriage returns before and after markup in frame text. By default, IADS

; ignores one carriage return before and after all markup. If this value is

; "Yes", IADS selectively ignores carriage returns around markup (one

; carriage return is ignored following all markup except end tags; one

; carriage return is ignored preceding end tags only).

[Configuration]

;ShowSysMenu=no

;ShowMaxMin=no

;ShowAllBookmarks=no

;DoSpecialCRProcessing=Yes

; The Interaction entry in this section defines whether interactions

; between IADS Reader and ZoomView result in a single instance of each

; application or multiple instances. By default, only a single instance

; of each application is created when IADS Reader and ZoomView interact.

[IADS_ZoomView]

Interaction=Single

;Interaction=Multiple

; The BitmapDir entry in this section defines an alternate group of bitmaps

; for the control panel buttons which have greyscale pictures instead of

; color. The default directory from which IADS gets the bitmaps for the

; buttons is X:/iads/icons (where "X" is the drive on which IADS was

; installed, and "/iads" is the path where IADS was installed). To use the

; alternate set of bitmaps supplied with IADS uncomment the "BitmapDir" line

; below and make appropriate changes for your IADS drive and path.

;

; The Positions entry in this section defines whether or not non-visible

; buttons occupy space in the IADS control panel. By default,

; non-visible buttons DO NOT occupy control panel space (i.e. visible buttons

; fill in the space(s) of non-visible ones). Uncomment the "Positions" line

; below if you want non-visible buttons to occupy control panel space

; (i.e. gaps appear in the control panel where non-visible buttons occur).

[Buttons]

Positions=NOTFIXED

;BitmapDir=X:\iads\icons2

;Positions=FIXED

[IADSMainWindow]

hMainWindow=1638514

[TempUser]

UserName=leslye

UserInitFile=c:/iads/etc/leslye.ini

Usergid=1

IADS CONFIGURATION/WIN.INI OPTIONS

WIN.INI OPTIONS WHEN INSTALLING IADS

When installing IADS the following information must be written to the WIN.INI file. Below is an example of what would be written to the WIN.INI if the executables and data were running from a CD*. The only files that must be physically located on the users hard drive are the BOOKMARKS, ETC, and REPORTS directories. These must be on the user’s hard drive because of the necessity of being able to write user’s bookmarks, notes, and reports information. The below entries can be made directly by opening the win.ini in a text editor or by utilizing the IADS Configuration Program.
[IADS]

Begin IADS section

APPLDIR=D:\IADS
Where the executables are running from - system assumes “ \programs” subdirectory. This is also the drive where the tm_info.ini file is – system assumes “\iads\rpstl”.

DMN=D:\IADS

Always the same as the above APPLDIR line

VERSION=3.0
Current version (or latest full release) of IADS

LocalDir=C:\IADS
Where all Bookmarks, Notes, and Reports are to be written (in their appropriate directories)

PasswordDir=C:\IADS
Where the passwd file and any associated *.ini files are located. If this line is not written or is left blank the system assumes the same value as in the APPLDIR line above.

[NMP]

Begin IADS RPSTL/IQuest section

H=C
User’s Hard Drive – Where \iads\rpstl\temp will be created. This should be the same as the LocalDir (above).

R=D
What drive the rpstl data is on.

NMP_DATABASE_PATH=C:/Javelin/IQUEST

Where IQuest Database Files are stored

The tm_info.ini can be in another location. To change location you must add the following line:

Tm_info_path=d:\javelin\rpstl

Iads Configuration Program

Although it is acceptable to make the above entries directly into the win.ini file, it is not recommended. To avoid the risk of creating serious errors in the computer’s operation due to human error, utilize the IADS Configuration program. This program provides a graphical user interface for choosing program settings. Once settings are chosen they are written to the win.ini file automatically, in the correct place.

IADS Configuration Window

	
[image: image31.png]

EXTERNAL PROGRAMS (PARAMETER ADMIN/REPLACE.INI)

Certain files have specific programs associated with them to view the files. For example, in the hotspot below the linktype="execute" with a href to the file to open. The graphic to view is a JPG and on the particular machine JPG is associated with PaintShop Pro.

	<HOTSPOT linktype="execute" href="c:\iads\DEMO\graphics\AVENGER.JPG">

To associate a different program to view this graphic another program can be added. This will allow the same graphic to be displayed in another program.

	<HOTSPOT linktype="execute" href="C:\Program Files\hjpro\bin\HIJAAK.EXE c:\iads\DEMO\graphics\AVENGER.JPG">

The example above would execute on the machine this was originally created on, but if this was placed on a CD or another drive, the example would not execute. Installs of the IETM should be set up so that any external programs should either be installed or looked for if they already exist on the computer. If they are already on the computer the install should capture the path of where these external programs reside and write to the replace.ini file.

The Parameter Admin program is a way to create paths to external programs that are utilized in the document and writes these paths to the replace.ini.

	[image: image32.png]

Once the parameter is created they can then be inserted into the document in place of the actual paths in the hotspots.

	<HOTSPOT linktype="execute" href="$(hijaak) $ $(graphics)AVENGER.JPG">

How to Create a parameter

1. Go to the IADS Program Group

2. Click on the Parameter Admin icon

3. Give the parameter a unique name in the parameter name box

4. When the parameter name is seen in the file, it will be replaced with whatever is in the parameter value box. Make sure whatever is entered in this box is exactly what should be put into the file when the parameter name is seen.

5. Click the add/update button

To utilize the parameter within the sgm/ide file:

1. Open the sgm/ide file in the system editor
2. Any place that could use the parmeter value can be replaced with (or if just creating the file, hotspot, etc. just type) a dollar sign followed by the parameter name inside of parenthesis. Ex:
$(graphics)
IADS INSTALL TOPICS

Where will the IADS executables be accessed to view the IETM?

Hard Drive or CD/Network drive?

What operating system will the user's computer be running?

Windows 95/98/NT/2000/ME/XP?

What version of IADS will be on the CD?

See the program group outline page for program group layout and provide the following information listed in the questions below. The top program group on the example page shows suggestions for the contents of the program group.

What do you want to name your program group?

What items do you want in your program group?

Do you want to use any special icons (not the IADS Default) for any of the items?

If so, you will need to generate an *.ico or .bmp file.

Do you want to provide customized logins for the IETM(s)?

If so, list the logins below with the path to the default *.sgm/*.ide file that should be displayed. If passwords are to be used with the logins list them with their associated login.

Suggestion: Provide logins that can be entered in either upper or lower case.

Do you want to provide an item with a specialized icon that will allow the user to bypass the login screen and automatically display a specific *.sgm/*.ide file?

Note: If used, the current user will be "default" with all login-based information saved to the database/default.ini file in the /iads/etc directory.

Do you want an IADS Reader icon that will require the user to login to access *.sgm/*.ide files?

Do you want a shortcut on the User's Desktop that will access the program group? If so, what do you want to name it?

Suggestion: It is a good idea to have the shortcut on the desktop because it eliminates several steps when accessing the IETM.

Do you have any external programs that are linked to from within an IADS *.sgm/*.ide file?

Do you have a text file that can be put at the root of the CD that will give specific installation instructions for IADS, as well as, any other external programs?

To be DA authenticated, this file must exist at the root of the CD. Typically this is the same install information that appears on the inside of the CD cover.

IADS INSTALL TOPICS (CONTINUED)

Do you want an auto-insert feature added to the CD?

Suggestion: This is very useful to users who may not be familiar with computer/software installations. This will allow the user to insert the CD into their CD Reader to have the install procedure AUTOMATICALLY execute and display on the screen. The CD install should be set up to detect if a previous, current, or later version of the CD has been installed. If a previous version is detected the user should be notified of this and given the recommended option to install the current CD. If the same version is detected the install procedure should be bypassed and the program group should automatically display. If a later version is detected the user should be notified of this and given the recommended option to NOT install the CD.

Note: To utilize the autorun feature the user must have the autorun box activated on the CD Reader drive. Also, the CD must have a file named autorun.inf located at the root of the CD with the following two lines:

[autorun]

open=javelin.exe

The example above shows the install executable as javelin.exe. In your autorun.inf you will have:

[autorun]

 open={substitute your executable name here without the brackets}

When installing IADS you must add an IADS section to the win.ini file.

For more information on what must be written refer to the attachment that is titled WIN.INI Options for IADS Install.

Do you have any specific graphics/animations you would like to display during the install?

If so, you must have the graphics created and accessible. For more information on graphics/animation options refer to your installation software package.

Install Program Group Options

The end user will not get the entire software suite in most cases. When performing an install, which programs the end user will need must be taken into consideration. For example, the user will probably need IADS Reader, but they will not need IADS Author. Below is an example of a program group offered to the end user

.

	
[image: image33.png]

Notice that this IETM contains a READ ME file to aid the user and an uninstall program in case the user needs to remove the IETM from their computer. When deciding on program groups, try to take into account every scenario the user will encounter as well as taking measures to protect your source data.

IQUEST AUTHOR/READER AND ITS USABILITY
When trying to perform a text based search the user is at the mercy of the technical writer. For example, the tech writer may have used a different term than the end user for the same part. If the user doesn’t search on the same word, they may not get any usable search results. IQUEST can be the solution in many of these instances.

IQUEST allows the user to search on a reference designator, a part number, an NSN, a description, a task, or an LCN. Furthermore it will allow the user to associate a piece of information with a task. For example, they may want to know how to repair a tire. If they did a text based search on the word “tire” the results would show every occurrence of the word. However, if the search was done in IQUEST they could associate a tire description with a repair task. This would only deliver search results that dealt with tire repair.

IQUEST utilizes IQLINKS to return valid search results. The IQLINKS are created by the author, then stored in a database. When an end user performs an IQ search, the database is queried based on the user’s entries.
Preliminary Steps

The following items should be taken into consideration prior to creating your IQUEST database.

1. The RPSTL database should be completed

2. The SGML files in the IETM should be completed (no more content data to be added)

3. The NMP Data Path in IADS Config should be set to the location that the IQUEST database will be stored

4. Your TASKCODE.DAT file should be created and stored in the IADS\ETC directory

Taskcode.dat

Every IQLINK must have a valid task associated with it. IQUEST checks to see if the task is valid by looking in the TASKCODE.DAT file. Below is a sample of a TASKCODE.DAT file:

	CODE|FUNCTION|INTERVAL|OPERATIONS/MAINTENANCE LEVEL|SERVICE DESIGNATOR|OPERABILITY

A|INSPECT|PREOPERATIVE/PREFLIGHT||ARMY|SYS INOP DURING EQUIP MAINT

B|TEST|SCHEDULED|||SYS OP DURING EQUIP MAINT

C|SERVICE|DAILY|OPERTOR/CREW/UNIT-CREW||FULL MISSION CAPABLE

D|ADJUST|DURING OPERATION|DEPOT/SHIPYARDS||PARTIAL MISSION CAPABLE

E|ALIGN|PERIODIC/PHASE|||NOT MISSION CAPABLE

F|CALIBRATE|SPECIAL|I-DS/AFLOAT/3RD/OFF EQUIPMENT|AIR FORCE|TURNAROUND

G|INSTALL|UNSCHEDULED|INTERMEDIATE/ASHORE AND AFLOAT||OFF EQUIP MAINT

H|REMOVE AND REPLACE|POSTOPERATIVE/POSTFLIGHT|I-GS/ASHORE/4TH/I-REAR||

J|REPAIR|EMERGENCY||FAA/ALL MILITARY|

K|OVERHAUL|NORMAL|||

L|REBUILD|WEEKLY|SPECIALIZED REPAIR ACTIVITY||

M|MISSION PROFILECHANGE|QUARTERLY||MARINE CORPS|

N|FAULT LOCATE|SEMIANNUALLY||NAVY|

O|OPERATE||ORG/ONEQUIPMENT/UNIT-ORG|OTHER|

P|LUBRICATE|MONTHLY|||

Q|CLEAN|CALENDAR|||

R|REMOVE|OVERHAUL CYCLE|||

S|DISASSEMBLE/ASSEMBLE|||NATIONAL SECURITY AGENCY|

T|TRANSPORTATION PREP|TURNAROUND||FAA|

U|PACKAGE/UNPACKAGE||||

V|PRESERVE||||

W|ACCESS||||

X||||ALL MILITARY|

Y|TRANSPORT|BDAR||COAST GUARD|

Z|END-OF-RUNWAY INSP||||

2|DEBUG||||

3|DISPOSE||||

4|LOAD/UNLOAD||||

5|SET-UP||||

6|MONITOR||||

7|PROCESS||||

The TASKCODE.DAT file can be looked at as a table. The vertical bars separate each entry into the table. The first row in the file serves as the table headers. In the above example the headings are code, function, interval, operations/maintenance level, service designator, and operability.

The first letter/number on each row is the value of the task. Task values can be combined into taskcodes. IQUEST reads the taskcodes based on position. For example if an IQLINK had a taskcode of ATC the value of the taskcode would be Inspect, Turnaround, Operator/Crew/Unit-Crew. Notice that A is in the first position of the taskcode and the first position on the A row (after the A because the task value does not count) is Inspect. T is in the second position and the second position on the T row is Turnaround. C is in the third position and the third position in C row is Operator/Crew/Unit-Crew.

Also notice that in the third position for A there is nothing between the two bars. If the author tries an invalid taskcode combination (such as ACA) IQUEST will not allow the taskcode to be used and generate a corresponding error message.
Creating IQLINKS

Ultimately what the IQUEST database will contain is the location and information of all created IQLINKS. The IQLINKS must be created by the author, at the frame level, on any IADS IDREF.

When an end-user performs a search in IQUEST, the software only searches the IQUEST database.

1. Open the SGML file in IADS Author

2. Navigate to the frame that needs an IQLINK

3. Go to Authoring menu and select Frame Properties

4. On the right side of the dialog box, select the button that says IQ Parameters the following box will appear:
	
[image: image34.png]

5. Select one of the ID references from the Link ID combo box
6. Enter a description in the description box (one will be suggested but it can be changed, whatever is entered here will appear in the search results).

7. Enter other available information into the appropriate boxes (the more information entered, the more useful the IQUEST search results will be)

8. Be sure to enter a task or a of taskcode combination (they can be selected from the drop down list or typed into Enter/Select Task to add)

9. Click the Add button

10. Click the Add Link button

11. If another link needs to be made click the New Link button and repeat steps 5-11

12. Click the exit button when all the links for that frame have been created

Creating the IQUEST Database

Once the IQLINKS have been created for every appropriate frame, the IQUEST database can be built.

1. From the IADS program group, click the IQUEST Author icon. The following dialog box will appear

	
[image: image35.png]

2. The Project Info tab will allow the author to create an IQUEST project and save all the settings for the project if this tab is used. This tab can be bypassed by clicking on the Compile tab and filling in the information on that tab. The compile tab will not save the settings on the next use of IQUEST Author.

3. Fill in the appropriate blanks and click update

4. Proceed to the Compile tab regardless of whether or not a project was saved

	
[image: image36.png]

5. If a project was saved, select it out of the Project Name combo box and all the appropriate project information will appear. If a project was not created on the project info tab fill in the Create database files in: box and the Find files based on: box.
6. Click the Compile button

The IQUEST database has now been created in the folder the author specified. The other tabs in IQUEST Author are optional but each will be discussed.

Stripping

Once the database has been compiled, IQLINK information is being stored in two places: the SGML document and the IQUEST database. IQUEST only searches the database when performing searches, so the IQLINK processing instructions can be removed from the SGML document. The Strip tab in the IQ Author will automatically remove all the IQLINKS from the SGML document. This will make the document cleaner to look at and cut down on the file size.
1. Click on the Strip Tab

2. Select a project name if applicable

3. Select an entire directory or domain to be stripped

4. Click the strip button

Decompiling

Any editing done to the IQLINKS must be done in the SGML document. If the document has been stripped, a decompile must be performed to empty the database into the file. The IQLINKS will be placed in the original locations.
1. Click the Decompile tab

2. Select a project name if applicable

3. Select the appropriate location of the database files if necessary

4. Click Decompile

Document Info

The document info tab allows the author to specify a descriptive name (such as TM number) to a file that has IQLINKS. This name is stored in one of the IQUEST database tables. It appears in the Topic Details of an IQ search result.
IQUEST Reader

The end user of the IETM would use the IQUEST Reader to search the manual.

To utilize the reader follow these steps:

1. Go to the IADS program group

2. Select IQUEST Reader

3. Go to the File menu and select Search

4. The following dialog box will appear

	
[image: image37.png]

5. Fill in the appropriate options
a. Notice that the user can determine if they want to search on part numbers, ref des, NSNs, Descriptions, etc. These fields are a direct correlation to the fields that the author can enter into the IQLINKS. This is why it is so important to fill in all available fields when creating IQLINKS.
b. The search mode area allows the end user to determine how they want the search criteria to be matched

c. The search range area allows the user to search everything, the RPSTL only, or on a specific task which is determined by the taskcode combination that the author chose

6. Click the search button

7. A list of topics will be generated, select on

8. Click either:

a. Go To Topic

b. Topic Details- this will give all of the information supplied by the IQLINK and IQ Author
c. Exit

REFERENCES

Processing Instructions

Top Level PIs (for all frames within that file)

Alert (embeds all warnings, cautions, and notes)

<?embedwarnings>

Style Sheet (link All frames the same Stylesheet)

<?Stylesheet href=”./styles/toc.sty”>

Domain (Link all files to the same domain list)

<?Domainfile href=”./domain.lst”?>

Multiple Domain

<?MultiDomainDir HREF="directory"?>
Index (Manipulate the Index button)

<?Indexfile href=”./toc.ide!toc?”>

Help (Manipulate the Help button)

<?Helpfile href=”./howtouse.ide!intro”?>

Title (Document Title)

<?Title href=”TM 9-1425-687-34&P”?>

Color (Gives all Frames the same background color)

<?BgColor rgb='purple' lock='1'?>

Other colors: aqua, black, blue, cyan, fuchsia, magenta, gray, green, lime, maroon, navy, olive, red, silver, teal, white, yellow, or orange.

Numeric triplet to define the red, green, and blue components of the color can be used a color value (example: “224, 224, 196”).

Hexadecimal representation of the RGB triplet can be utilized as a color value (example: “0xE0E0C4”).

Tag Mapping (Substitute a another tag for one that IADS recognizes)

<?TagMap figure=”graphic” src=”boardno”?>

Toolbar (Controls the location of the toolbar)

<?ToolBar loc='L' Lock='1' showno='N'?>

loc='L' toolbar located on the LEFT

loc='R' toolbar located on the RIGHT

loc='T' toolbar located on the TOP

loc='B' toolbar located on the BOTTOM

Use Library (SportIce)

<?UseLibrary HREF="support.dll"?>

ODBC Database file

<?Use ODBCdatabase?>

IQLINK (Link for IQUEST Task based search)

<?IQLINK PARTNO='1234' REFDES='12345' DESC='VERSION 3.0 AND BEYOND FEATURES AND ENHANCEMENTS' LINKID='IADS V3.0 TOC' TASK='A, D'>

Frame level (for each frame)

Frame (Break document into logical sections)

<?frame id='helmetpic'?>

Other Attributes

title='Helmet Picture' (title at the frame level)

image='../graphics/Helmet.jpg'(splits screen with graphic on the left, text on the right)

style='..\Styles\Cover.sty' (links a stylesheet with a frame)

hidemenu='Y' or hide='Y' (hides menu bar for that frame)

showno='Y' (hides the frame numbers)

next='.\Chapter 1.sgm!Section1' (manipulates the next button)

previous='.\toc.sgm' help='.\HelmetHelp.sgm' (manipulates the previous button)

index='.\toc.sgm' (manipulates the index button at the frame)

loc='top' (controls the location of the toolbar)

Frame Level Embed Warning (1 for ON or 0 for off)
<?EMBED WARNINGS='0 or 1'?>
Other Processing Instructions

Hotspot (must be closed)

<?hotspot linktype=”message” href=”This message is to show you that the hotspot tag can also be a processing instruction”>………..<?/hotspot>

Alert (Must be Closed)

<?alert id=”w6” type=”warning”>………<?/alert>

Novice (Must be closed)

<?novice>…………..<?/novice>

Calculation

<?calc expr=”grade1 + grade2” result=”total”>

Next

<?next>

Previous

<?prev>

Exit

<?exit>

CALS Table PI’s

<?PUB TABLEALIGN="center | left | right"?>
<?PUB TABLEINDENT="###"?>
<?PUB TBLCOLOFFSET="###"?>
Auto numbering (must have a start and stop processing instruction)

<?autonum start=”1” init=”1”>

………

<?autonum stop=”1”?>

Test

<?if test=”$ssn eq 222-22-2222”>

<?elseif test=”$ssn eq 111-11-1111”>

<?else>

<?endif>

IADS hotspot action processing instructions (* means they can be used by themselves also)
<?display text=”!./chap1.ide!1-3”>

<?execute program=”/windows/clock.exe”>

or

<?execute program=”/javelin/javelin.pdf”> {Version 3.1 and above}

<?PLAY HREF="waveform file" or "video file"?>

<?measure type=”OHM”>

<?DIAG HREF="…"?>
<?assign variable=”counter” value=”1” repaint=”true”> *

<?DISPLAY ELAPSE = *

<?DISPLAY EXPR= *

<?query text=”Please enter your social security number” result=”ssn” default=”000-00-0000”> *

Keyboard Shortcuts

	Shortcut
	Action Performed

	Alt + E
	Opens System Editor

	Ctrl + E
	Edit mode

	Ctrl + L
	Reloads the document

	Enter
	Activates current hotspot

	Tab
	Moves to next open hotspot and makes active

	Home
	Takes you to first frame

	End
	Takes you to the last frame

	Right Arrow
	Takes you to the next frame

	Left Arrow
	Takes you to the previous frame

Website References

http://whatis.techtarget.com
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=17505
http://www.w3.org/TR/NOTE-sgml-xml
http://navysgml.dt.navy.mil/28001/xml.html

http://sine.ni.com/apps/we/nioc.vp?cid=1475&lang=US
Procedure 1

Popstack hotspot that will go back to the Chapter where the last push=”1” was clicked. Ex: if they came from Chapter 2, they will return to Chapter 2. This saves the user from having to create a Go Back hotspot for each Chapter.

Chapter 2

Hotspot with push=”1” attribute and links to Procedure 1.

Chapter 3

Hotspot with push=”1” attribute and links to Procedure 1.

Chapter 1

Hotspot with push=”1” attribute and links to Procedure 1.

Return helmet to assembly depot.

Num:

YES

Use DMM Card to perform Test 1.

Was a failure detected?

Num:

Check mircrophone cable connection.

Is your voice transmitting thru the microphone?

Num:

YES

NO

NO

NO

Communication system repaired successfully.

Num:

Return helmet to assembly depot.

Num:

YES

NO

Replace the microphone.

Voice transmitting?

Num:

Communication system repaired successfully.

Num:

YES

Ensure that communications cord is plugged into communication unit and that unit is working. Ensure helmet connector on left rear side of helmet is secured.

Can you hear?

Num:

Obtain a new earphone assembly and microphone.

Num:

52

_1127117346

_1129714879

_1131860924

_1131882466

_1131883170

_1131861264

_1130136125

_1131860349

_1129715154

_1127211531

_1129712706

_1127208776

_1127116722

_1127116976

_1127117024

_1127116810

_1122453596.ppt

Chapter1.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’ push=‘1’?>Procedure 1<?/hotspot?>

Chapter2.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’ push=‘1’?>Procedure 1<?/hotspot?>

Chapter3.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’ push=‘1’?>Procedure 1<?/hotspot?>

Chapter4.sgm, Frame 1

<?hotspot href=‘Procedure1.sgm!Frame 1’ push=‘1’?>Procedure 1<?/hotspot?>

Each Chapter?.sgm below references Procedure 1

Procedure1.sgm, Frame 1

Procedure1.sgm, Frame 2

<?hotspot href=‘Procedure2.sgm!Frame 1’ push=‘1’?>Procedure 2<?/hotspot?>

Procedure1.sgm, Frame 3

Procedure1.sgm, Frame 4

<?hotspot linktype=‘popstack”?>

Go Back<?/hotspot?>

Procedure2.sgm, Frame 3

<?hotspot linktype=‘popstack”?>

Go Back<?/hotspot?>

Procedure2.sgm, Frame 1

Procedure2.sgm, Frame 2

Procedure1.sgm with 4 frames

Procedure2.sgm with 3 frames

Legend

Bold text: Hotspot

Box: A frame within a file

Underlined text: File and frame reference

Dashed arrow: Clicking Go Back hotspot process

Solid arrow: Clicking Next process

Dotted arrow: Clicking a Procedure hotspot process

Start

Here

_1127116362

_1123050628

_1122439194

_1122445368

_1122448979

_1122438086

